MONTE CARLO SIMULATIONS OF MOLECULAR CLUSTERS: FROM SCALAR TO PARALLEL (original) (raw)

Abstract

Abstract: The parallelization of a structurally inhomogeneous Metropolis Monte Carlo particle/potential problem was studied in an application to solvent clusters. The program was ported to a small parallel-processor system consisting of five T800–20 transputers. ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (150)

  1. I J. Merikanto, H. Vehkamäki, and E. Zapadinsky, "Monte Carlo simulations of critical cluster sizes and nucleation rates of water", (2004), J. Chem. Phys. 121, 914. II J. Merikanto, H. Vehkamäki, and E. Zapadinsky, "Analysis of nucleation ability of cluster configurations with Monte Carlo simulations of argon", (2006), J. Chem. Phys. 125, 084503.
  2. III A. Lauri, J. Merikanto, E. Zapadinsky, and H. Vehkamäki, "Comparison of Monte Carlo simulation methods for the calculation of the nucleation barrier of argon", (2006), Atm. Res. 82, 489.
  3. IV J. Merikanto, E. Zapadinsky, A. Lauri, and H. Vehkamäki, "Origin of the failure of classical nucleation theory: incorrect description of the smallest clusters", (2007), Phys. Rev. Letters 98, 145702.
  4. V J. Merikanto, E. Zapadinsky, A. Lauri, I. Napari, and H. Vehkamäki, "Connection between the virial equation of state and physical clusters in a low density vapor", (2007), J. Chem. Phys. 127, 104303.
  5. Abraham, F. F.: Homogeneous Nucleation Theory, Academic Press, New York and London, 1974.
  6. Acharyya, M. and Stauffer, D.: Nucleation and hysteresis in Ising model: Classical theory versus computer simulation, The European Physical Journal B, 5, 571-575, 1998.
  7. Band, W.: Dissociation treatment of condensing systems, J. Chem. Phys, 7, 324-326, 1939a.
  8. Band, W.: Dissociation treatment of condensing systems. II, J. Chem. Phys, 7, 927- 931, 1939b.
  9. Barker, J. A. and Watts, R. O.: Structure of water: A Monte Carlo calculation, Chem. Phys. Lett., 3, 144-145, 1969.
  10. Barrett, J.: The significance of cluster lifetime in nucleation theory, J. Chem. Phys., 116, 8856-8862, 2002.
  11. Becker, R. and Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Phys. (Leipzig), 24, 719-752, 1935.
  12. Bennett, C. H.: Efficient Estimation of Free Energy Differences from Monte Carlo Data, J. Comput. Phys., 22, 245-268, 1976.
  13. Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P.: The missing term in effective pair potentials, J. Phys. Chem., 91, 6269-6271, 1987.
  14. Bertelsmann, A. and Heist, R. H.: Diffusion cloud chamber operation and the back- ground gas effect, Atmos. Res., 46, 195, 1998.
  15. Bilj, A.: Discontinuities in the energy and specific heat, Ph.D. thesis, University of Leiden, Germany, 1938.
  16. Binder, K.: 'Clusters' in the Ising Model, Metastable States and Essential Singularity, Annals of physics, 98, 390-417, 1976.
  17. Bowles, R. K., McGraw, R., Schaaf, P., Senger, B., Voegel, J., and Reiss, H.: A molecular based derivation of the nucleation theorem, J. Chem. Phys., 113, 4524, 2000.
  18. Brus, D., Zdimal, V., and Stratmann, F.: Homogeneous nucleation rate measurements of 1-propanol in helium: The effect of carrier gas pressure, J. Chem. Phys., 124, 164 306, 2006.
  19. Chen, B., Siepmann, J. I., Oh, K. J., and Klein, M. L.: Aggregation-volume-bias Monte Carlo simulations of vapor-liquid nucleation barriers for Lennard-Jonesium, J. Chem. Phys, 115, 10 903-10 913, 2001.
  20. Chen, C.-C. and Tsai, W.-T.: Condensation of supersaturated n-butanol vapor on charged/neutral nanoparticles of D-mannose and L-rhamnose, J. Colloid Interface Sci., 246, 270-280, 2002.
  21. Courtney, W. G.: Remarks on homogeneous nucleation, J. Chem. Phys., 35, 2249, 1961.
  22. Dillmann, A. and Meier, G. E. A.: Homogeneous nucleation of supersaturated vapours, Chem. Phys. Lett, 160, 71-74, 1989.
  23. Dillmann, A. and Meier, G. E. A.: A refined droplet approach to the problem of homogeneous nucleation from the vapor phase, J. Chem. Phys., 94, 3872-3884, 1991.
  24. Farkas, L.: Keimbildungsgeschwindigkeit in übersättigten Dämpfen, Z. Physik. Chem., 125, 236-242, 1927.
  25. Farley, F. J. M.: The Theory of the Condensation of Supersaturated Ion-Free Vapour, Proc. Roy. Soc (London), A212, 530, 1952.
  26. Ferguson, F. T. and Heist, R. H.: The Impact of Convective Flow on Thermal Diffusion Cloud Chamber Operation, J. Phys. Chem. B, 105, 11 828, 2001.
  27. Ferguson, F. T., Heist, R. H., and Nuth III, J. A.: The effect of carrier gas pressure and wall heating on the operation of the thermal diffusion cloud chamber, J. Chem. Phys., 115, 10 829, 2001.
  28. Fisher, M. E.: The theory of condensation and the critical point, Physics, 3, 255-283, 1967.
  29. Fladerer, A. and Strey, R.: Homogeneous nucleation and droplet growth in supersat- urated argon vapor: The cryogenic nucleation pulse chamber, J. Chem. Phys., 124, 164 710, 2006.
  30. Ford, I. J.: Imperfect vapour-gas mixtures and homogeneous nucleation, J. Aerosol Sci., 23, 447-455, 1992.
  31. Ford, I. J.: Thermodynamical properties of critical clusters from measurements of vapour-liquid homogeneous nucleation rates, J. Chem. Phys., 105, 8324-8332, 1996.
  32. Ford, I. J.: Nucleation theorems, the statistical mechanics of molecular clusters, and a revision of classical nucleation theory, Phys. Rev. E, 56, 5615-5629, 1997.
  33. Ford, I. J. and Harris, S. A.: Molecular cluster decay viewed as escape from a potential mean force, J. Chem. Phys., 120, 4428-4440, 2004.
  34. Ford, I. J., Laaksonen, A., and Kulmala, M.: Modification of the Dillmann-Meier theory of homogeneous nucleation, J. Chem. Phys., 99, 764-765, 1993.
  35. Frenkel, J.: Statistical theory of condensation phenomena, J. Chem. Phys., 7, 200-201, 1939.
  36. Frenkel, J.: Kinetic Theory of Liquids, Oxford University Press, London, 1946.
  37. Gao, G. T., Oh, K. J., and Zeng, X. C.: Effect of uniform electric field on homogeneous vapor-liquid nucleation and phase equilibria. II. Extended simple point charge model water, J. Chem . Phys, 110, 2533-2538, 1999.
  38. Garcia, N. G. and Soler Torroja, J. M.: Monte Carlo Calculation of Argon Clusters in Homogeneous Nucleation, Phys. Rev. Lett., 47, 186-190, 1981.
  39. Gibbs, J. W.: Scientific Papers, vol. 1, Longmans Green, London, 1906.
  40. Girshick, S. L. and Chiu, C.-P.: Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor, J. Chem. Phys., 93, 1273-1277, 1990.
  41. Hale, B. N.: Application of a scaled homogeneous nucleation rate formalism to exper- imental data at T¡¡T c , Phys. Rev. A, 33, 4156-4163, 1986.
  42. Hale, B. N. and DiMattio, D.: A Monte Carlo discrete sum (MCDS) nucleation rate model for water, in: Proceedings of the15th International Conference on Nucleation and Atmospheric Aerosols, edited by Hale, B. and Kulmala, M., pp. 31-34, American Institute of Physics Conference Proceedings, Springer Verlag, Berlin, Heidelberg, New York, 2000.
  43. Hale, B. N. and DiMattio, D. J.: Monte Carlo studies of water/ice adsorbed on model AgI: Effects of lattice shifts, in: Nucleation and atmospheric aerosols, edited by Kulmala, M. and Wagner, P., p. 349, Pergamon, Ny, 1996.
  44. Hansen, J. P. and Verlet, L.: Phase transitions of the Lennard-Jones system, Phys. Rev., 184, 151-161, 1969.
  45. Harris, S. A. and Ford, I. J.: A dynamical definition of quasibound molecular clusters, J. Chem. Phys., 118, 9216-9223, 2003.
  46. Heist, R. H., Janjua, M., and Ahmed, J.: Effects of background gases on the homoge- neous nucleation of vapors. 1, J. Phys. Chem., 98, 4443-4453, 1994.
  47. Heist, R. H., Ahmed, J., and Janjua, M.: Effects of background gases on the homoge- neous nucleation of vapors. 2, J. Phys. Chem., 99, 375-383, 1995.
  48. Hill, T. L.: Statistical Mechanics: Principles and Selected Applications, McGraw-Hill, New York, 1956.
  49. Hyvärinen, A. P., Brus, D., Zdimal, V., Smolik, J., Kulmala, M., Viisanen, Y., and Lihavainen, H.: The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium, J. Chem. Phys., 124, 224 304, 2006.
  50. Ianni, J. C. and Bandy, A. R.: A Density Functional Theory Study of the Hydrates of NH 3 * H 2 SO 4 and Its Implications for the Formation of New Atmospheric Particles, J. Phys. Chem. A, 103, 2801-2811, 1999.
  51. Intergovernmental Panel on Climate Change: Climate Change 2007: The Physical Science Basis -Summary for Policymakers, 2007.
  52. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L.: Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926-935, 1983.
  53. Kalikmanov, V. I. and van Dongen, M. E. H.: Cluster Approach to the Kinetic Theory Of Homogeneous Nucleation, Europhys. Lett., 21, 645-650, 1993.
  54. Kalikmanov, V. I. and van Dongen, M. E. H.: Semiphenomenological theory of homo- geneous vapor-liquid nucleation, J. Chem. Phys., 103, 4250-4255, 1995.
  55. Kashchiev, D.: On the relation between nucleation work, nucleus size, and nucleation rate, J. Chem. Phys., 76, 5098-5102, 1982.
  56. Kashchiev, D.: Effect of carrier-gas pressure on nucleation, J. Chem. Phys., 104, 8671- 8677, 1996.
  57. Kashchiev, D.: Thermodynamically consistent description of the work to form a nucleus of any size, J. Chem. Phys., 118, 1837-1851, 2003.
  58. Kathmann, S. M. and Hale, B. N.: Monte Carlo simulations of small sulfuric acid-water clusters, J. Phys. Chem B., 105, 11 719-11 728, 2001.
  59. Kathmann, S. M., Schenter, G. K., and Garrett, B. C.: Dynamical nucleation theory: Calculation of condensation rate constants for small water clusters, J. Chem. Phys., 111, 4688-4697, 1999.
  60. Kathmann, S. M., Schenter, G. K., and Garrett, B. C.: Multicomponent dynamical nucleation theory and sensitivity analysis, J. Chem. Phys., 120, 9133-9141, 2004.
  61. Katz, J. L.: Condensation of a Supersaturated Vapor. I. The Homogeneous Nucleation of the n-Alkanes, J. Chem. Phys., 52, 4733-4748, 1970.
  62. Katz, J. L., Saltsburg, H., and Reiss, H.: Nucleation in associated vapours, J. Colloid Interface Sci., 21, 560-568, 1966.
  63. Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P.: Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., 35, 143-176, 2004.
  64. Kurtén, T., Sundberg, M. R., Vehkamäki, H., Noppel, M., Blomqvist, J., and Kulmala, M.: Ab Initio and Density Functional Theory Reinvestigation of Gas-Phase Sulfuric Acid Monohydrate and Ammonium Hydrogen Sulfate, J. Phys. Chem. A, 110, 7178- 7188, 2006.
  65. Kusaka, I. and Oxtoby, D.: Evaluating free energy, enthalpy, and entropy of protonated water clusters by a grand canonical Monte Carlo simulation, J. Chem. Phys., 113, 10 100-10 104, 2000.
  66. Kusaka, I., Wang, Z.-G., and Seinfeld, J.: Binary nucleation of sulfuric acid-water: Monte Carlo simulation, J. Chem. Phys., 108, 6829-6847, 1998a.
  67. Kusaka, I., Wang, Z.-G., and Seinfeld, J. H.: Direct evaluation of the equilibrium distribution of physical clusters by a grand canonical Monte Carlo simulation, J. Chem. Phys., 108, 3416-3423, 1998b.
  68. Laaksonen, A., Ford, I. J., and Kulmala, M.: Revised parametrization of the Dillman- Meier theory of homogeneous nucleation, Physical Review E, 49, 5517-5524, 1994.
  69. Laasonen, K., Wonczak, S., Strey, R., and Laaksonen, A.: Molecular dynamics simula- tions of gas-liquid nucleation of Lennard-Jones fluid, J. Chem. Phys., 113, 9741-9747, 2000.
  70. Lauri, A., Zapadinsky, E., Vehkamäki, H., and Kulmala, M.: Comparison between the classical theory predictions and molecular simulation results for heterogeneous nucleation of argon, J. Chem. Phys., 125, 164 712, 2006.
  71. Lee, J. K., Barker, J. A., and Abraham, F. F.: Theory and Monte Carlo simulations of physical clusters in the imperfect vapor, J. Chem. Phys., 58, 3166-3180, 1973.
  72. Lee, J. K., Barker, J. A., and Abraham, F. F.: Monte Carlo simulation of physical clusters of water molecules, J. Chem. Phys., 61, 1221, 1974.
  73. Looijimans, K. N. H., Luijten, C. C. M., Hofmans, G. C. J., and Dongen, M. E. H.: classical binary nucleation theory applied to the real mixture n-nonane/methane at high pressures, J. Chem. Phys., 102, 4531-4537, 1995.
  74. Lothe, J. and Pound, G. M.: Reconsiderations of Nucleation Theory, J. Chem. Phys., 36, 2080-2085, 1962.
  75. Mason, E. A. and Spurling, T. H.: The virial equation of state, Pergamon, New York, 1969.
  76. Mayer, J. E.: Statistical mechanics of condensing systems. I., J. Chem. Phys., 5, 67, 1937.
  77. McDonald, J. E.: Homogeneous nucleation of vapor condensation II. Kinetic aspects, Am. J. Phys., 31, 31, 1963.
  78. McGraw, R. and Laaksonen, A.: Scaling Properties of the Critical Nucleus in Classical and Molecular-Based Theories of Vapor-Liquid Nucleation, Phys. Rev. Lett., 76, 2754-2757, 1996.
  79. McGraw, R. and Laaksonen, A.: Interfacial curvature free energy, the Kelvin relation, and vapor-liquid nucleation rate, J. Chem. Phys., 106, 5284-5287, 1997.
  80. Metropolis, N. and Ulam, S.: The Monte Carlo method, Journal of the American Statistical Association, 44, 335-341, 1949.
  81. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092, 1953.
  82. Napari, I. and Laaksonen, A.: Gas-liquid nucleation in partially miscible systems: Free-energy surfaces and structures of nuclei from density functional calculations, J. Chem. Phys., 111, 5485-5489, 1999.
  83. Napari, I. and Laaksonen, A.: Surfactant effects and an order-disorder transition in binary gas-liquid nucleation, Phys. Rev. Lett., 84, 2184-2187, 2000.
  84. Napari, I. and Vehkamäki, H.: Molecular dynamic simulations of atom-cluster collision processes, J. Chem. Phys., 120, 165-169, 2004.
  85. Napari, I. and Vehkamäki, H.: The role of dimers in evaporation of small argon clusters, J. Chem. Phys, 121, 819-822, 2004.
  86. Napari, I., Laaksonen, A., and Strey, R.: Density-functional studies of amphiphilic binary mixtures. II. Gas-liquid nucleation, J. Chem. Phys., 113, 4480-4487, 2000.
  87. Norman, G. E. and Filinov, V. S.: Investigations of phase transition by a Monte Carlo method, High Temp. (USSR), 7, 216-222, 1969.
  88. Novikov, V. M.: The dense carrier gas effect in vapor phase nucleation, Phys. Rev. E, 55, 5743-5749, 1997.
  89. Oh, K. J. and Zeng, X. C.: Effect of carrier-gas pressure on barrier to nucleation: Monte Carlo simulation of water/nitrogen system, J. Chem. Phys., 114, 2681-2686, 2001.
  90. Oh, K. J., Gao, G. T., and Zeng, X. C.: The effect of a uniform electric field on homogeneous vapor-liquid nucleation in a dipolar fluid. I. Stockmayer fluid, J. Chem. Phys., 109, 8435-8441, 1998.
  91. Oh, K. J., Gao, G. T., and Zeng, X. C.: Nucleation of water and methanol droplets on cations and anions: the sign preference, Phys. Rev. Lett., 86, 5080-5083, 2001.
  92. Oxtoby, D. W.: Fundamentals of Inhomogeneous Fluids, Dekker, New York, 1992.
  93. Oxtoby, D. W. and Evans, R.: Nonclassical nucleation theory for the gas-liquid tran- sition, J. Chem. Phys., 89, 7521-7530, 1988.
  94. Oxtoby, D. W. and Kashchiev, D.: A general relation between the nucleation work and the size of nucleus in multicomponent nucleation, J. Chem. Phys., 100, 7665-7671, 1994.
  95. Oxtoby, D. W. and Laaksonen, A.: Some consequences of the nucleation theorem for binary fluids, J. Chem. Phys., 102, 6846-6850, 1995.
  96. Re, S., Osamura, Y., and Morokuma, K.: Coexistence of Neutral and Ion-Pair Clusters of Hydrated Sulfuric Acid H 2 SO 4 (H 2 O) n (n= 1-5) -A Molecular Orbital Study, J. Phys. Chem., A 103, 3535-3547, 1999.
  97. Reguera, D. and Reiss, H.: Nucleation in confined ideal binary mixtures: The Renniger- Wilemski problem revisited, J. Chem. Phys., 119, 1533-1546, 2003.
  98. Reguera, D. and Reiss, H.: Fusion of extended modified liquid drop model for nucleation and dynamical nucleation theory, Phys. Rev. Letters, 93, 165 701, 2004.
  99. Reguera, D. and Ruby, J. M.: Nonequilibrium translational-rotational effects in nucle- ation, J. Phys. Chem., 115, 7100, 2001.
  100. Reguera, D., Bowles, R. K., Djikaev, Y., and Reiss, H.: Phase transitions in systems small enough to be clusters, J. Chem. Phys., 118, 340-353, 2003.
  101. Reiss, H., Katz, J. L., and Cohen, E. R.: Translation-Rotation Paradox in the Theory of Nucleation, J. Chem. Phys., 48, 5553-5560, 1968.
  102. Reiss, H., Kegel, W. K., and Katz, J. I.: Resolution of the Problems of Replacement Free Energy, 1/S, and Internal Consistency in Nucleation Theory by Consideration of the Length Scale for mixing entropy, Phys. Rev. Letters, 78, 4506-4509, 1997.
  103. Reiss, H., Kegel, W. K., and Katz, J. L.: Role of the model dependent translational volume scale in the classical theory of nucleation, J. Phys. Chem. A, 102, 8548-8555, 1998.
  104. Rikvold, P. A., Tomita, H., Miyashita, S., and Sides, W.: Metasable lifetimes in kinetic Ising model: dependence on field and system size, Phys. Rev. E, 49, 5080-5090, 1994.
  105. Rowley, L. A., Nicholson, D., and Parsonage, N.: Monte Carlo Grand Canonical En- semble Calculation in gas-Liquid Transition Region for 12-6 Argon, J. Comp. Phys., 17, 401-414, 1975.
  106. Saltz, D.: Using the noninteracting cluster theory to predict the properties of real vapor, J. Chem. Phys., 101, 6038-6051, 1994.
  107. Schaaf, P., Senger, B., Voegel, J.-C., and Reiss, H.: Extended (n/v)-Stillinger cluster for use in the theory of homogeneous nucleation, Physical Review, 60, 771-778, 1999.
  108. Schaaf, P., Senger, B., Voegel, J.-C., Bowles, R. K., and Reiss, H.: Simulative deter- mination of kinetic coefficient for nucleation rates, J. Chem. Phys, 114, 8091-8104, 2001.
  109. Schenter, G. K., Kathmann, S., and Garrett, B.: Variational transition state theory of vapor phase nucleation, J. Chem. Phys., 110, 7951-7959, 1999a.
  110. Schenter, G. K., Kathmann, S. M., and Garrett, B. C.: Dynamical Nucleation Theory: A New Molecular Approach to Vapor-Liquid Nucleation, Phys. Rev. Letters, 82, 3484-3487, 1999b.
  111. Schenter, G. K., Kathmann, S. M., and Garrett, B. C.: Dynamical benchmarks of the nucleation kinetics of water, J. Chem. Phys., 116, 4275-4280, 2002.
  112. Schmelzer, J. J. and P., L. D.: Monte Carlo simulations of nucleation and growth in the 3D nearest neighbor Ising model, International Journal of Modern Physics C, 12, 345-359, 2001.
  113. Senger, B., Schaaf, P., Corti, D. S., Bowles, R., Voegel, J.-C., and Reiss, H.: A molec- ular theory of the homogeneous nucleation rate. I. Formulation and fundamental issues, J. Chem. Phys., 110, 6421-6437, 1999.
  114. Shen, V. K. and Debenedetti, P. G.: Density-functional study of homogeneous bubble nucleation in the stretched Lennard-Jones fluid, J. Chem. Phys., 114, 4149-4159, 2001.
  115. Sonntag, R. E. and van Wylen, G. J.: Fundamentals of statistical thermodynamics, Wiley, New York, 1966.
  116. Spracklen, D., Carslaw, K., Kulmala, M., Kerminen, V.-M., Mann, G., and Sihto, S.-L.: The contribution of boundary layer nucleation events to total particle concen- tratioons on regional and global scales, Atmos. Chem. Phys., 6, 5631-5648, 2006.
  117. Stillinger, F. H.: Rigorous Basis of the Frenkel-Band Theory of Association Equilib- rium, J. Chem. Phys., 38, 1486-1494, 1963.
  118. Talanquer, V.: A new phenomenological approach to gas-liquid nucleation based on the scaling properties of the critical nucleus, J. Chem. Phys., 106, 9957-9960, 1997.
  119. Talanquer, V. and Oxtoby, D. W.: Dynamical density functional theory of gas-liquid nucleation, J. Chem. Phys., 100, 5190-5199, 1994.
  120. Talanquer, V. and Oxtoby, D. W.: Critical clusters in binary mixtures: A density functional approach, J. Chem. Phys., 104, 1993-1999, 1996.
  121. Talanquer, V. and Oxtoby, D. W.: Gas-liquid nucleation in associating fluids, J. Chem. Phys., 112, 851, 2001.
  122. ten Wolde, P. R. and Frenkel, D.: Computer simulation study of gas-liquid nucleation in a Lennard-Jones system, J. Chem. Phys., 109, 9901-9918, 1998.
  123. ten Wolde, P. R., Oxtoby, D. W., and Frenkel, D.: Chain formation in homogeneous gas-liquid nucleation of polar fluids, J. Chem. Phys., 111, 4762-4773, 1999.
  124. ten Wolde, P. R., Ruiz-Montero, M. J., and Frenkel, D.: Numerical calculation of the rate of homogeneous gas-liquid nucleation in a Lennard-Jones system, J. Chem. Phys., 110, 1591-1599, 1999.
  125. Thomson, W.: On the equilibrium of vapour at a curved surface of liquid, Proc. Roy. Soc. Edinburgh, 7, 63-69, 1870.
  126. Thomson, W.: On the equilibrium of vapour at a curved surface of liquid, Phil. Mag., 42, 448-452, 1871.
  127. Tolman, R. C.: The Effect of Droplet Size on Surface Tension, J. Chem. Phys., 17, 333-337, 1949.
  128. Toxvaerd, S.: Molecular-dynamics simulation of homogeneous nucleation in the vapor phase, J. Chem. Phys., 115, 8913-8920, 2001.
  129. Toxvaerd, S.: Molecular dynamics simulation of heterogeneous nucleation at a struc- tureless solid surface, J. Chem. Phys, 117, 10 303-10 310, 2002.
  130. Toxvaerd, S.: Molecular dynamics simulation of nucleation in the presence of a carrier gas, Journal of Chemical Physics, 119, 10 764-10 770, 2003.
  131. Vehkamäki, H.: Classical Nucleation Theory in Multicomponent Systems, Springer, Berlin Heidelberg, 2006.
  132. Vehkamäki, H. and Ford, I.: Nucleation theorems applied to the Ising model, Phys. Rev. E., 59, 6483-6488, 1999.
  133. Viisanen, Y., Strey, R., and Reiss, H.: Homogeneous nucleation rates for water, J. Chem. Phys., 99, 4680-4692, 1993.
  134. Volmer, M. and Flood, H.: ., Zeitschrift fur Physikalische Chemie, 170, 273-285, 1934.
  135. Volmer, M. and Weber, A.: Keimbildung in übersättigten Gebilden, Z. Phys. Chem., 119, 277-301, 1925.
  136. Ward, R. C., Holdman, J. M., and Hale, B. N.: Monte Carlo studies of water monolayer clusters on substrates: Hexagonal AgI, J. Chem. Phys., 77, 3198-3202, 1982.
  137. Ward, R. C., Hale, B. N., and Terrazas, S.: A study of the critical cluster size for water monolayer clusters on a model AgI basal substrate, J. Chem. Phys., 78, 420- 423, 1983.
  138. Wedekind, J., Reguera, D., and Strey, R.: Finite-size effects in simulations of nucle- ation, J. Chem. Phys., 125, 214 505, 2006.
  139. Wedekind, J., Strey, R., and Reguera, D.: New method to analyze simulations of activated processes, J. Chem. Phys., 126, 134 103, 2007.
  140. Wilemski, G. and Jin-Song Li: Nucleation near the spinodal: Limitations of mean field density functional theory, J. Chem. Phys., 121, 2004, 2004.
  141. Wilson, C. T. R.: Condensation of Water Vapour in the Presence of Dust-Free Air and Other Gases, Phil. Trans. Royal Society London A, 189, 265-307, 1897.
  142. Wölk, J. and Strey, R.: Homogeneous Nucleation of H 2 O and D 2 O in Comparison: The Isotope Effect, J. Phys. Chem. B, 105, 11 683-11 701, 2001.
  143. Wonczak, S., Strey, R., and Stauffer, D.: Confirmation of classical nucleation theory by Monte Carlo simulations in the 3-dimensional Ising model at low temperatures, J. Chem. Phys., 113, 1976-1980, 2000.
  144. Yasuoka, K. and Matsumoto, M.: Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid., J. Chem. Phys., 109, 8451-8462, 1998a.
  145. Yasuoka, K. and Matsumoto, M.: Molecular dynamics of homogeneous nucleation in the vapor phase. II. Water, J. Chem. Phys., 109, 8463-8470, 1998b.
  146. Yoo, S., Oh, J., and Zeng, X. C.: Monte Carlo simulation of homogeneous binary vapor-liquid nucleation: Mutual enhancenment of nucleation in a partially miscible system, J. Chem. Phys, 115, 8518-8524, 2001.
  147. Zapadinsky, E. and Kulmala, M.: Helmholtz free energy of a cluster on the coherent substrate: Monte Carlo calculations, J. Chem. Phys., 102, 6858-6864, 1995.
  148. Zapadinsky, E., Gorbunov, B., Voloshin, V., and Kulmala, M.: Monte Carlo Calcu- lation of Ice Cluster Energy on the Substrate with a Similar Structure, Journal of colloid and interface science, 166, 286-293, 1994.
  149. Zapadinsky, E., Lauri, A., and Kulmala, M.: The molecular approach to heterogeneous nucleation, J. Chem. Phys., 122, 114 709, 2005.
  150. Zeldovich, J.: Theory of the formation of a new phase, Cavitation, Zh. Eksp. Theor. Fiz., 12, 525-538, 1942.