KSR1 Modulates the Sensitivity of Mitogen-Activated Protein Kinase Pathway Activation in T Cells without Altering Fundamental System Outputs (original) (raw)

Itk Controls the Spatiotemporal Organization of T Cell Activation

During T cell activation by antigen-presenting cells (APCs), the diverse spatiotemporal organization of components of T cell signaling pathways modulates the efficiency of activation. Here, we found that loss of the tyrosine kinase interleukin-2 (IL-2)–inducible T cell kinase (Itk) in mice altered the spatiotemporal distributions of 14 of 16 sensors of T cell signaling molecules in the region of the interface between the T cell and the APC, which reduced the segregation of signaling intermediates into distinct spatiotemporal patterns. Activation of the Rho family guanosine triphosphatase Cdc42 at the center of the cell-cell interface was impaired, although the total cellular amount of active Cdc42 remained intact. The defect in Cdc42 localization resulted in impaired actin accumulation at the T cell–APC interface in Itk-deficient T cells. Reconstitution of cells with active Cdc42 that was specifically directed to the center of the interface restored actin accumulation in Itk-deficient T cells. Itk also controlled the central localization of the guanine nucleotide exchange factor SLAT [Switch-associated protein 70 (SWAP-70)–like adaptor of T cells], which may contribute to the activation of Cdc42 at the center of the interface. Together, these data illustrate how control of the spatiotemporal organization of T cell signaling controls critical aspects of T cell function.