Mitochondrial DNA damage and the aging process–facts and imaginations* (original) (raw)
Related papers
Journal of Scientific Research, 2010
According to the mitochondrial theory of aging, accrual of mutations in mitochondrial DNA (mtDNA) plays the paramount function in the cellular pathology of aging and in development of age-related degenerative ailments. Reactive oxygen species (ROS), which are byproducts of oxidative phosphorylation (OX-PHOS) in aerobic (mitochondrial) respiration, cause oxidative stress-induced damage to mtDNA. This damaged DNA, whose normal role is to encode proteins many of which are players in the electron transport chain (ETC), now codes for defective proteins. Such faulty proteins lead to a considerable impairment in the efficacy of ETC, thereby generating more ROS, which cause further damage to mtDNA in turn, leading to further defects in proteins, aggravated ETC dysfunction, and even more ROS. Hence, a ‘vicious cycle’ propagates that ultimately directs tissue cells towards structural and functional decline, or in other words, degeneration and aging. However, in spite of a wide acceptance of t...
Clinical Science, 2004
Among the numerous theories that explain the process of aging, the mitochondrial theory of aging has received the most attention. This theory states that electrons leaking from the ETC (electron transfer chain) reduce molecular oxygen to form O2•− (superoxide anion radicals). O2•−, through both enzymic and non-enzymic reactions, can cause the generation of other ROS (reactive oxygen species). The ensuing state of oxidative stress results in damage to ETC components and mtDNA (mitochondrial DNA), thus increasing further the production of ROS. Ultimately, this ‘vicious cycle’ leads to a physiological decline in function, or aging. This review focuses on recent developments in aging research related to the role played by mtDNA. Both supportive and contradictory evidence is discussed.
Aging: A mitochondrial DNA perspective, critical analysis and an update
World journal of experimental medicine, 2014
The mitochondrial theory of aging, a mainstream theory of aging which once included accumulation of mitochondrial DNA (mtDNA) damage by reactive oxygen species (ROS) as its cornerstone, has been increasingly losing ground and is undergoing extensive revision due to its inability to explain a growing body of emerging data. Concurrently, the notion of the central role for mtDNA in the aging process is being met with increased skepticism. Our progress in understanding the processes of mtDNA maintenance, repair, damage, and degradation in response to damage has largely refuted the view of mtDNA as being particularly susceptible to ROS-mediated mutagenesis due to its lack of "protective" histones and reduced complement of available DNA repair pathways. Recent research on mitochondrial ROS production has led to the appreciation that mitochondria, even in vitro, produce much less ROS than previously thought, automatically leading to a decreased expectation of physiologically achi...
Mitochondrial function and mitochondrial DNA maintenance with advancing age
2014
We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.
Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?
Genes, 2018
Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H₂O₂ by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependen...
Mitochondrial DNA mutations and ageing
Biochimica et Biophysica Acta (BBA) - General Subjects, 2009
The mechanism by which we age has sparked a huge number of theories, and is an area of intense debate. As the elderly population rises, the importance of elucidating these mechanisms is becoming more apparent as age is the single biggest risk factor for a number of diseases such as cancer, diabetes and neurodegenerative disease. Mitochondrial DNA (MtDNA) mutations have been shown to accumulate in cells and tissues during the ageing process; however the question as to whether these mutations have a causal role in the ageing process remains an area of uncertainty. Here we review the current literature, and discuss the evidence for and against a causal role of mtDNA mutations in ageing and in the pathogenesis of age-related disease.
Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production
Proceedings of the National Academy of Sciences, 2005
The mitochondrial theory of aging proposes that reactive oxygen species (ROS) generated inside the cell will lead, with time, to increasing amounts of oxidative damage to various cell components. The main site for ROS production is the respiratory chain inside the mitochondria and accumulation of mtDNA mutations, and impaired respiratory chain function have been associated with degenerative diseases and aging. The theory predicts that impaired respiratory chain function will augment ROS production and thereby increase the rate of mtDNA mutation accumulation, which, in turn, will further compromise respiratory chain function. Previously, we reported that mice expressing an error-prone version of the catalytic subunit of mtDNA polymerase accumulate a substantial burden of somatic mtDNA mutations, associated with premature aging phenotypes and reduced lifespan. Here we show that these mtDNA mutator mice accumulate mtDNA mutations in an approximately linear manner. The amount of ROS produced was normal, and no increased sensitivity to oxidative stress-induced cell death was observed in mouse embryonic fibroblasts from mtDNA mutator mice, despite the presence of a severe respiratory chain dysfunction. Expression levels of antioxidant defense enzymes, protein carbonylation levels, and aconitase enzyme activity measurements indicated no or only minor oxidative stress in tissues from mtDNA mutator mice. The premature aging phenotypes in mtDNA mutator mice are thus not generated by a vicious cycle of massively increased oxidative stress accompanied by exponential accumulation of mtDNA mutations. We propose instead that respiratory chain dysfunction per se is the primary inducer of premature aging in mtDNA mutator mice. mitochondria ͉ mtDNA mutator mice Conflict of interest statement: No conflicts declared.