Chicken Cathelicidins Display Antimicrobial Activity against Multiresistant Bacteria without Inducing Strong Resistance (original) (raw)
Related papers
Molecular Immunology, 2009
Chicken host defense peptide cathelicidin-2 (CATH-2) is known to exert antimicrobial and immunomodulatory activities and consists of two ␣-helices connected by a hinge region. Here we report the biological properties of the separate ␣-helical segments and the importance of the proline residue in the hinge region. Substitution of proline-14 in the CATH-2 hinge region by leucine, but not by glycine, strongly reduced antibacterial and hemolytic activity. Furthermore, substitution by leucine strongly reduced the neutralization of LPS-induced cytokine production and peptide-induced monocyte chemotactic protein-1 (MCP-1) production by human peripheral blood mononuclear cells (PBMCs). This indicates that the hinge region is important for rapid penetration of the bacterial membrane as well as indirect and direct immunomodulatory activities. The highly cationic and amphipathic N-terminal segment (C1-15) exhibited very potent antibacterial activity and fast killing kinetics, while displaying low cytotoxicity towards chicken erythrocytes and PBMCs. The N-terminal and, to a lesser extent, the C-terminal helical regions potently neutralized LPS-induced release of TNF␣, IL-6 and IL-10 by PBMCs, while IL-8 production was only moderately affected. These results indicate that core elements within mature CATH-2 can be identified that are linked to antibacterial and/or immunomodulatory activities. Further studies may lead to the development of peptide antibiotics with specific properties that can be used for prophylactic and/or therapeutic applications.
Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins
PloS one, 2015
Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great...
International Journal of Antimicrobial Agents, 2010
Host defence peptides (HDPs) are considered to be excellent candidates for the development of novel therapeutic agents. Recently, it was demonstrated that the peptide C1-15, an N-terminal segment of chicken HDP cathelicidin-2, exhibits potent antibacterial activity while lacking cytotoxicity towards eukaryotic cells. In the present study, we report that C1-15 is active against bacteria such as Bacillus anthracis and Yersinia pestis that may potentially be used by bioterrorists. Substitution of single and multiple phenylalanine (Phe) residues to tryptophan (Trp) in C1-15 resulted in variants with improved antibacterial activity against B. anthracis and Y. pestis as well as decreased salt sensitivity. In addition, these peptides exhibited enhanced neutralisation of lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs). The antibacterial and LPS-neutralising activities of these C1-15-derived peptides are exerted at concentrations far below the concentrations that are toxic to human PBMCs. Taken together, we show that PheTrp substitutions in C1-15 variants enhances the antibacterial and LPS-neutralising activities against pathogenic bacteria, including those that may potentially be used as biological warfare agents.
Cathelicidins: family of antimicrobial peptides. A review
Molecular Biology Reports, 2012
Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.
Scientific reports, 2016
Increasing antibiotic resistance and ever stricter control on antibiotic use are a driving force to develop alternatives to antibiotics. One such strategy is the use of multifunctional Host Defense Peptides. Here we examined the protective effect of prophylactic treatment with the D analog of chicken cathelicidin-2 (D-CATH-2) against a respiratory E. coli infection. Chickens were treated with D-CATH-2 in ovo at day 18 of embryonic development or intramuscularly at days 1 and 4 after hatch. At 7 days of age, birds were challenged intratracheally with avian pathogenic E. coli. Protection was evaluated by recording mortality, morbidity (Mean Lesion Score) and bacterial swabs of air sacs at 7 days post-infection. In ovo D-CATH-2 treatment significantly reduced morbidity (63%) and respiratory bacterial load (>90%), while intramuscular treatment was less effective. D-CATH-2 increased the percentage of peripheral blood lymphocytes and heterophils by both administration routes. E. coli s...
Avian cathelicidins: paradigms for the development of anti-infectives
Veterinary microbiology, 2011
The broad-spectrum defense system based on host defense peptides (HDPs) is evolutionary very old and many invertebrates rely on this system for protection from bacterial infections. However, in vertebrates the system remained important in spite of the superposition of a very sophisticated adaptive immune system. The cathelicidins comprise a major group of HDPs in mammals. About six years ago it was first described that cathelicidins are also present in birds. Here we review the properties and biological activities of the recently discovered avian cathelicidins and their potential to be used as a paradigm for the development of anti-infectives. Like the mammalian cathelicidins, avian cathelicidins exert direct antimicrobial activities but can also selectively boost host immune responses by regulation of cytokine production and recruitment of immune cells. In addition, it was found that chicken cathelicidins bind endotoxins and dampen the endotoxin-mediated inflammatory response. Mole...
Peptides, 2011
A truncated version of host defense peptide chicken cathelicidin-2, C1-15, possesses potent, broad spectrum antibacterial activity. A variant of this peptide, F 2,5,12 W, which contains 3 phenylalanine to tryptophan substitutions, possesses improved antibacterial activity and lipopolysaccharide (LPS) neutralizing activity compared to C1-15. In order to improve the proteolytic resistance of both peptides we engineered novel chicken cathelicidin-2 analogs by substitution of l-with d-amino acids and head-to-tail cyclization. Both cyclic and d-amino acid variants showed enhanced stability in human serum compared to C1-15 and F 2,5,12 W. The d-amino acid variants were fully resistant to proteolysis by trypsin and bacterial proteases. Head-to-tail cyclization of peptide F 2,5,12 W resulted in a 3.5-fold lower cytotoxicity toward peripheral blood mononuclear cells. In general, these modifications did not influence antibacterial and LPS neutralization activities. It is concluded that for the development of novel therapeutic compounds based on chicken cathelicidin-2 d-amino acid substitutions and cyclization must be considered. These modifications increase the stability and lower cytotoxicity of the peptides without altering their antimicrobial potency.
Microbiology, 2017
With the growing demand for new antibiotics to combat increasing multi-drug resistance, a family of antimicrobial peptides known as cathelicidins has emerged as potential candidates. Expansions in cathelicidin-encoding genes in marsupials and monotremes are of specific interest as the peptides they encode have evolved to protect immunologically naive young in the harsh conditions of the pouch and burrow. Our previous work demonstrated that some marsupial and monotreme cathelicidins have broad-spectrum antibacterial activity and kill resistant bacteria, but the activity of many cathelicidins is unknown. To investigate associations between peptide antimicrobial activity and physiochemical properties, we tested 15 cathelicidin mature peptides from tammar wallaby, grey short-tailed opossum, platypus and echidna for antimicrobial activity against a range of bacterial and fungal clinical isolates. One opossum cathelicidin ModoCath4, tammar wallaby MaeuCath7 and echidna Taac-CATH1 had broad-spectrum antibacterial activity and killed methicillin-resistant Staphylococcus aureus. However, antimicrobial activity was reduced in the presence of serum or whole blood, and non-specific toxicity was observed at high concentrations. The active peptides were highly charged, potentially increasing binding to microbial surfaces, and contained amphipathic helical structures, which may facilitate membrane permeabilisation. Peptide sequence homology, net charge, amphipathicity and alpha helical content did not correlate with antimicrobial activity. However active peptides contained a significantly higher percentage of cationic residues than inactive ones, which may be used to predict active peptides in future work. Along with previous studies, our results indicate that marsupial and monotreme cathelicidins show potential for development as novel therapeutics to combat increasing antimicrobial resistance.