Patterns of introduced species interactions affect multiple aspects of network structure in plant-pollinator communities (original) (raw)
Related papers
Contrasting effects of invasive plants in plant–pollinator networks
Oecologia, 2008
The structural organization of mutualism networks, typiWed by interspeciWc positive interactions, is important to maintain community diversity. However, there is little information available about the eVect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy Xowers (Carpobrotus aYne acinaciformis and Opuntia stricta) aVect the structure of Mediterranean plant-pollinator networks. To attribute diVerences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and Xoral composition, with or without the invaders. Both invasive plant species received signiWcantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant-pollinator networks. Carpobrotus and Opuntia had contrasting eVects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant-pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant-pollinator network.
The interactions between pairs of native and alien plants via shared use of pollinators have been widely studied. Studies of invasive species effects at the community level on the other hand are still scarce. Few community level studies, however, have considered how differences in the intensity of invasion, and degree of floral trait similarity between native and invasive species, can mediated effects on native plant-pollinator communities. Here, we evaluated the effect of alien species on overall plant-pollinator network structure, and species-level network parameters, across nine coastal communities distributed along 205 km at Yucatán, México that vary in alien species richness and flower abundance. We further assessed the effect of alien plant species on plant-pollinator network structure and robustness via computational simulation of native and invasive plant extinction scenarios. We did not find significant differences between native and alien species in functional floral pheno...
Species traits and network structure predict the success and impacts of pollinator invasions
Nature communications, 2018
Species invasions constitute a major and poorly understood threat to plant-pollinator systems. General theory predicting which factors drive species invasion success and subsequent effects on native ecosystems is particularly lacking. We address this problem using a consumer-resource model of adaptive behavior and population dynamics to evaluate the invasion success of alien pollinators into plant-pollinator networks and their impact on native species. We introduce pollinator species with different foraging traits into network models with different levels of species richness, connectance, and nestedness. Among 31 factors tested, including network and alien properties, we find that aliens with high foraging efficiency are the most successful invaders. Networks exhibiting high alien-native diet overlap, fraction of alien-visited plant species, most-generalist plant connectivity, and number of specialist pollinator species are the most impacted by invaders. Our results mimic several di...
PLoS Biology, 2006
Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant-pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability. Citation: Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4(1): e1.
Interaction strength in plant-pollinator networks: Are we using the right measure?
PLOS ONE
Understanding how ecological networks are assembled is important because network structure reflects ecosystem functioning and stability. Quantitative network analysis incorporates measures of interaction strength as an estimate of the magnitude of the effect of interaction partners on one another. Most plant-pollinator network studies use frequency of interaction between individual pollinators and individual plants (encounter) as a surrogate of interaction strength. However, the number of flowers visited per encounter may strongly vary among pollinator and plant species, and therefore not all encounters are quantitatively equivalent. We sampled plant-pollinator interactions in a Mediterranean scrubland and tested whether using a measure of interaction strength based on the number of flowers visited resulted in changes in species (species strength, interaction species asymmetry, specialization) and network descriptors (nestedness, H2', interaction evenness, plant generality, pollinator generality) compared to the encounter-based measure. Several species (including some of the most abundant ones) showed important changes in species descriptors, notably in specialization. These changes were especially important in plant species with large floral displays, which became less specialized with the visit-based measure of interaction strength. At the network level we found significant changes in all properties analysed. With the encounterbased approach plant generality was much higher than pollinator generality (high specialization asymmetry between trophic levels). However, with the visit-based approach plant generality was greatly reduced so that plants and pollinators had similar levels of generalization. Interaction evenness also decreased strongly with the visit-based approach. We conclude that accounting for the number of flowers visited per encounter provides a more ecologically relevant measure of interaction strength. Our results have important implications for the stability of pollination networks and the evolution of plant-pollinator interactions. The use of a visit-based approach is especially important in studies relating interaction network structure and ecosystem function (pollination and/or exploitation of floral resources).
Invasive plant integration into native plant-pollinator networks across Europe
Proceedings of the Royal Society B: Biological Sciences, 2009
The structure of plant -pollinator networks has been claimed to be resilient to changes in species composition due to the weak degree of dependence among mutualistic partners. However, detailed empirical investigations of the consequences of introducing an alien plant species into mutualistic networks are lacking. We present the first cross-European analysis by using a standardized protocol to assess the degree to which a particular alien plant species (i.e. Carpobrotus affine acinaciformis, Impatiens glandulifera, Opuntia stricta, Rhododendron ponticum and Solanum elaeagnifolium) becomes integrated into existing native plant-pollinator networks, and how this translates to changes in network structure.
Acta Oecologica
The decline of pollinators may alter the complex system of interactions that they establish with flowering plants, with potential negative consequences on both partners. Within this context, network analysis may be a useful tool to study ecological properties of plant-pollinator interactions and to evaluate the outcomes of conservation actions. Three conservation measures were implemented within the European LIFE+ PP-ICON project to support the local pollinator community of a population of the rare plant Dictamnus albus in a protected area near Bologna, Italy. Artificial nesting sites were installed to support solitary bees, populations of native plants were reinforced to increase foraging resources for pollinators, and colonies of bumblebees reared from wild queens were released in the study area. In this work we evaluate the effects of these conservation actions on plant-pollinator networks over a period of four years, comparing a pre-(2011-2012) and a post-conservation (2013-2014) action period. The overall network generalisation increased after the implementation of conservation measures and interactions were more evenly distributed. Module composition significantly changed between the two periods, showing a marked rewiring of interactions. D. albus was a module hub both before and after conservation actions, thus emerging as an important node within its own module. In addition, some plant and pollinator species directly targeted by conservation measures became module connectors, highlighting their increased importance in linking different modules. Finally, the reinforcement of plant and pollinator populations led to increased flower visitation. These results indicate that conservation actions affected species both directly and indirectly and that the network of interactions has potentially increased its robustness and resilience towards possible species loss. This study highlights ways in which network analysis can be used to measure changes in plant-pollinator interactions in response to conservation actions.
Oecologia, 2018
The Anthropocene is marked by an unprecedented homogenisation of the world's biota, confronting species that never co-occurred during their evolutionary histories. Interactions established in these novel communities may affect ecosystem functioning; however, most research has focused on the impacts of a minority of aggressive invasive species, while changes inflicted by a less conspicuous majority of non-invasive alien species on community structure are still poorly understood. This information is critical to guide conservation strategies, and instrumental to advance ecological theory, particularly to understand how non-native species integrate in recipient communities and affect the interactions of native species. We evaluated how the structure of 50 published pollination networks changes with the proportion of alien plant species and found that network structure is largely unaffected. Although some communities were heavily invaded, the proportion of alien plant species was relatively low (mean = 10%; max. = 38%). We further characterized the pollination network in a botanic garden with a plant community dominated by non-invasive alien species (85%). We show that the structure of this novel community is also not markedly different from native-dominated communities. Plant-pollinator interactions revealed no obvious differences regarding plant origin (native vs. alien) or the native bioregion of the introduced plants. This overall similarity between native and alien plants is likely driven by the contrasting patterns of invasive plants (promoting generalism), and non-invasive aliens, suggested here to promote specialization.
The strength of plant-pollinator interactions
Ecology
Recent studies of plant-animal mutualistic networks have assumed that interaction frequency between mutualists predicts species impacts (population-level effects), and that field estimates of interaction strength (per-interaction effects) are unnecessary. Although existing evidence supports this assumption for the effect of animals on plants, no studies have evaluated it for the reciprocal effect of plants on animals. We evaluate this assumption using data on the reproductive effects of pollinators on plants and the reciprocal reproductive effects of plants on pollinators. The magnitude of species impacts of plants on pollinators, the reciprocal impacts of pollinators on plants, and their asymmetry were well predicted by interaction frequency. However, interaction strength was a key determinant of the sign of species impacts. These results underscore the importance of quantifying interaction strength in studies of mutualistic networks. We also show that the distributions of interaction strengths and species impacts are highly skewed, with few strong and many weak interactions. This skewed distribution matches the pattern observed in food webs, suggesting that the community-wide organization of species interactions is fundamentally similar between mutualistic and antagonistic interactions. Our results have profound ecological implications, given the key role of interaction strength for community stability.
Phenological shifts drive biodiversity loss in plant--pollinator networks
2020
Plant-pollinator interactions are key for ecosystem maintenance and world crop production, and their occurrence depends on the synchronization of life-cycle events among interacting species. Phenological shifts observed for plant and pollinator species increase the risk of phenological mismatches, threatening community stability. However, the magnitudes and directions of phenological shifts present a high variability, both among communities and among species of the same community. Community-wide consequences of these different responses have not been explored. Additionally, variability in phenological and topological traits of species can affect their persistence probability under phenological changes. We explored the consequences of several scenarios of plant-pollinator phenological mismatches for community stability. We also assessed whether species attributes can predict species persistence under phenological mismatch. To this end, we used a dynamic model for plant-pollinator networks. The model incorporates active and latent life-cycle states of species and phenological dynamics regulating life-cycle transitions. Interaction structure and species phenologies were extracted from eight empirical plant-pollinator networks sampled at three locations during different periods. We found that for all networks and all scenarios, species persistence decreased with increasing magnitude of the phenological shift, for both advancements and delays in flowering phenologies. Changes in persistence depended on the scenario and the network being tested. However, all networks exhibited the lowest species persistence when the mean of the expected shift was equivalent to its standard deviation and this shift was greater than two weeks. Conversely, the highest species persistences occurred when earlier-flowering plants exhibited stronger shifts. Phenophase duration was the most important attribute as a driver of plant persistence. For pollinator persistence, species degree was the most important attribute, followed by phenophase duration. Our findings highlight the importance of phenologies on the stability and robustness of mutualistic networks.