Multifibrations. A class of shape fibrations with the path lifting property (original) (raw)

2001, Czechoslovak Mathematical Journal

Abstract

sparkles

AI

This paper introduces the concept of multifibrations, a new class of shape fibrations characterized by the path lifting property. The authors explore connections between the shape category and multivalued maps and establish results regarding the lifting of homotopy classes of fine multivalued maps. Through various theorems and corollaries, significant insights into the asymptotic behavior of these multifibrations are presented, contributing to the understanding of the internal structure of the shape category.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (28)

  1. K. Borsuk: On movable compacta. Fund. Math. 66 (1969), 137-146.
  2. K. Borsuk: Theory of Shape (Monografie Matematyczne 59). Polish Scientific Pub- lishers, Warszawa, 1975.
  3. F. W. Cathey: Shape fibrations and strong shape theory. Topology Appl. 14 (1982), 13-30.
  4. Z. Čerin: Shape theory intrinsically. Publ. Mat. 37 (1993), 317-334.
  5. Z. Čerin: Proximate topology and shape theory. Proc. Roy. Soc. Edinburgh 125 (1995), 595-615.
  6. Z. Čerin: Approximate fibrations. To appear.
  7. D. Coram and P. F. Duvall, Jr.: Approximate fibrations. Rocky Mountain J. Math. 7 (1977), 275-288.
  8. J. M. Cordier and T. Porter: Shape Theory. Categorical Methods of Approximation (Ellis Horwood Series: Mathematics and its Applications). Ellis Horwood Ltd., Chichester, 1989.
  9. J. Dydak and J. Segal: Shape Theory: An Introduction (Lecture Notes in Math. 688). Springer-Verlag, Berlin, 1978.
  10. J. Dydak and J. Segal: A list of open problems in shape theory. J. Van Mill and G. M. Reed: Open problems in Topology. North Holland, Amsterdam, 1990, pp. 457-467.
  11. J. E. Felt: ε-continuity and shape. Proc. Amer. Math. Soc. 46 (1974), 426-430.
  12. A. Giraldo: Shape fibrations, multivalued maps and shape groups. Canad. J. Math 50 (1998), 342-355.
  13. A. Giraldo and J. M. R. Sanjurjo: Strong multihomotopy and Steenrod loop spaces. J. Math. Soc. Japan. 47 (1995), 475-489.
  14. R. W. Kieboom: An intrinsic characterization of the shape of paracompacta by means of non-continuous single-valued maps. Bull. Belg. Math. Soc. 1 (1994), 701-711.
  15. K. Kuratowski: Topology I. Academic Press, New York, 1966.
  16. S. Mardešić: Approximate fibrations and shape fibrations. Proc. of the Interna- tional Conference on Geometric Topology. PWN, Polish Scientific Publishers, 1980, pp. 313-322.
  17. S. Mardešić and T. B. Rushing: Shape fibrations. General Topol. Appl. 9 (1978), 193-215.
  18. S. Mardešić and T. B. Rushing: Shape fibrations II. Rocky Mountain J. Math. 9 (1979), 283-298.
  19. S. Mardešić and J. Segal: Shape Theory. North Holland, Amsterdam, 1982.
  20. E. Michael: Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152-182.
  21. M. A. Morón and F. R. Ruiz del Portal: Multivalued maps and shape for paracom- pacta. Math. Japon. 39 (1994), 489-500.
  22. J. M. R. Sanjurjo: A non-continuous description of the shape category of compacta. Quart. J. Math. Oxford (2) 40 (1989), 351-359.
  23. J. M. R. Sanjurjo: Multihomotopy sets and transformations induced by shape. Quart. J. Math. Oxford (2) 42 (1991), 489-499.
  24. J. M. R. Sanjurjo: An intrinsic description of shape. Trans. Amer. Math. Soc. 329 (1992), 625-636.
  25. J. M. R. Sanjurjo: Multihomotopy, Čech spaces of loops and shape groups. Proc. London Math. Soc. (3) 69 (1994), 330-344.
  26. Authors' addresses: Departamento de Matemática Aplicada, Facultad de Informá- tica, Universidad Politécnica, Campus de Montegancedo, Boadilla del Monte, 28660
  27. Madrid, Spain, e-mail: agiraldo@fi.upm.es; Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad Complutense, 28040
  28. Madrid, Spain, e-mail: jose sanjurjo@mat.ucm.es.