Adsorption effects of NO[sub 2] at ppm level on visible photoluminescence response of SnO[sub 2] nanobelts (original) (raw)
The visible photoluminescence (PL) of tin oxide nanobelts is quenched by nitrogen dioxide at ppm level in a fast (time scale order of seconds) and reversible way. Besides, the response seems highly selective toward humidity and other polluting species, such as CO and NH 3 . We believe that adsorbed gaseous species that create surface states can quench PL by creating competitive nonradiative paths. A comparison between conductometric and PL response suggests that the two responses are ascribable to different adsorption processes.