Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities (original) (raw)

Nitrogen regulation of protein-protein interactions and transcript levels of GlnK PII regulator and AmtB ammonium transporter homologs in Archaea

MicrobiologyOpen, 2013

Gene homologs of GlnK PII regulators and AmtB-type ammonium transporters are often paired on prokaryotic genomes, suggesting these proteins share an ancient functional relationship. Here, we demonstrate for the first time in Archaea that GlnK associates with AmtB in membrane fractions after ammonium shock, thus, providing a further insight into GlnK-AmtB as an ancient nitrogen sensor pair. For this work, Haloferax mediterranei was advanced for study through the generation of a pyrE2-based counterselection system that was used for targeted gene deletion and expression of Flag-tagged proteins from their native promoters. AmtB1-Flag was detected in membrane fractions of cells grown on nitrate and was found to coimmunoprecipitate with GlnK after ammonium shock. Thus, in analogy to bacteria, the archaeal GlnK PII may block the AmtB1 ammonium transporter under nitrogen-rich conditions. In addition to this regulated protein-protein interaction, the archaeal amtB-glnK gene pairs were found to be highly regulated by nitrogen availability with transcript levels high under conditions of nitrogen limitation and low during nitrogen excess. While transcript levels of glnK-amtB are similarly regulated by nitrogen availability in bacteria, transcriptional regulators of the bacterial glnK promoter including activation by the two-component signal transduction proteins NtrC (GlnG, NRI) and NtrB (GlnL, NRII) and sigma factor r N (r 54 ) are not conserved in archaea suggesting a novel mechanism of transcriptional control.

Diverse homologues of the archaeal repressor NrpR function similarly in nitrogen regulation

FEMS microbiology letters, 2007

NrpR is a transcriptional repressor of nitrogen assimilation genes that was recently discovered and characterized in the methanogenic archaeon Methanococcus maripaludis. NrpR homologues are widely distributed in Euryarchaeota and present in a few bacterial species. They exist in three different domain configurations: a single ORF encoding one NrpR domain following an N-terminal helix-turn-helix (HTH); a single ORF encoding two NrpR domains fused in tandem following an N-terminal HTH; and two separate ORFs, one with a single domain following an N-terminal HTH and one with a single domain without a HTH. Phylogenetic analysis indicated that the NrpR family forms five distinct groups: the single domain HTH type, the two domains of the double domain HTH type and the two separately encoded domains. To determine the function of diverse NrpR homologues, representative genes in were expressed an Methanococcus maripaludis nrpR deletion mutant. Homologues from species that possess a single gen...

In vivo activity of the nitrogen control transcription factor NtcA is subjected to metabolic regulation in Synechococcus sp. strain PCC 7942

FEMS Microbiology Letters, 2004

The cyanobacterial protein NtcA is a global transcriptional regulator of genes involved in nitrogen assimilation that are subjected to ammonium-promoted repression and is itself controlled by positive autoregulation. Strain CSI70 derived from Synechococcus sp. strain PCC 7942 was constructed to overexpress an additional ntcA gene copy from a constitutive promoter. This strain exhibited high levels of the NtcA protein both in the presence and in the absence of ammonium. However, expression of the NtcA-dependent nir operon and glnA gene (tested by RNA/DNA hybridization and enzyme activity) was still subjected to nitrogen regulation. These results indicate in vivo regulation of the activity of NtcA at activation of transcription of nitrogen-regulated genes as a function of the nitrogen status of the cell.

Gene expression of Haloferax volcanii on intermediate and abundant sources of fixed nitrogen

International Journal of Molecular Sciences, 2019

Haloferax volcanii, a well-developed model archaeon for genomic, transcriptomic, and proteomic analyses, can grow on a defined medium of abundant and intermediate levels of fixed nitrogen. Here we report a global profiling of gene expression of H. volcanii grown on ammonium as an abundant source of fixed nitrogen compared to l-alanine, the latter of which exemplifies an intermediate source of nitrogen that can be obtained from dead cells in natural habitats. By comparing the two growth conditions, 30 genes were found to be differentially expressed, including 16 genes associated with amino acid metabolism and transport. The gene expression profiles contributed to mapping ammonium and l-alanine usage with respect to transporters and metabolic pathways. In addition, conserved DNA motifs were identified in the putative promoter regions and transcription factors were found to be in synteny with the differentially expressed genes, leading us to propose regulons of transcriptionally co-regulated operons. This study provides insight to how H. volcanii responds to and utilizes intermediate vs. abundant sources of fixed nitrogen for growth, with implications for conserved functions in related halophilic archaea.

Regulatory Response of Methanococcus maripaludis to Alanine, an Intermediate Nitrogen Source

Journal of Bacteriology, 2002

In the methanogenic archaeon Methanococcus maripaludis, growth with ammonia results in conditions of nitrogen excess. Complete repression of nitrogen fixation (nif) gene transcription occurs, and glutamine synthetase (glnA) gene transcription falls to a basal constitutive level. In addition, ammonia completely switches off nitrogenase enzyme activity. In contrast, growth with dinitrogen as the sole nitrogen source results in nitrogen starvation, full expression of nif and glnA, and high activity of nitrogenase. Here we report that a third nitrogen source, alanine, results in an intermediate regulatory response. Growth with alanine resulted in intermediate transcription of nif and glnA, and addition of alanine to a nitrogen-fixing (diazotrophic) culture caused partial switch-off of nitrogenase. This uniformity of response occurred despite differences in regulatory mechanisms. Nitrogenase switch-off requires the nitrogen sensor homologs NifI 1 and NifI 2 , while transcriptional regulation of nif and glnA relies on a different, unknown sensor mechanism. In addition, although nif and glnA transcription are governed by a common repressor, the numbers and arrangements of repressor binding sites differ. Thus, the nif promoter region contains two operators situated downstream of the transcription start site, while the glnA promoter region contains only one operator just upstream of two closely spaced transcription start sites. In a previous study of nif expression using ammonia, we were able to detect a role only for the first nif operator in repression. Here we show that nif repression by alanine requires the second operator as well. In contrast, in the case of glnA the single operator was sufficient for repression by ammonia or alanine. These results suggest a uniform cellular response to nitrogen that is mediated by a different mechanism in each case.

DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates

Molecular Genetics and Genomics, 2005

Methansarcina mazei Go¨1 DNA arrays were constructed and used to evaluate the genomic expression patterns of cells grown on either of two alternative methanogenic substrates, acetate or methanol, as sole carbon and energy source. Analysis of differential transcription across the genome revealed two functionally grouped sets of genes that parallel the central biochemical pathways in, and reflect many known features of, acetate and methanol metabolism. These include the acetate-induced genes encoding acetate activating enzymes, acetyl-CoA synthase/CO dehydrogenase, and carbonic anhydrase. Interestingly, additional genes expressed at significantly higher levels during growth on acetate included two energy-conserving complexes (the Ech hydrogenase, and the A 1 A 0-type ATP synthase). Many previously unknown features included the induction by acetate of genes coding for ferredoxins and flavoproteins, an aldehyde:ferredoxin oxidoreductase, enzymes for the synthesis of aromatic amino acids, and components of iron, cobalt and oligopeptide uptake systems. In contrast, methanol-grown cells exhibited elevated expression of genes assigned to the methylotrophic pathway of methanogenesis. Expression of genes for components of the translation apparatus was also elevated in cells grown in the methanol medium relative to acetate, and was correlated with the faster growth rate observed on the former substrate. These experiments provide the first comprehensive insight into substratedependent gene expression in a methanogenic archaeon. This genome-wide approach, coupled with the complementary molecular and biochemical tools, should greatly accelerate the exploration of Methanosarcina cell physiology, given the present modest level of our knowledge of these large archaeal genomes.

Contribution of Transcriptomics to Systems-Level Understanding of Methanogenic Archaea

Archaea, 2013

Methane-producingArchaeaare of interest due to their contribution to atmospheric change and for their roles in technological applications including waste treatment and biofuel production. Although restricted to anaerobic environments, methanogens are found in a wide variety of habitats, where they commonly live in syntrophic relationships with bacterial partners. Owing to tight thermodynamic constraints of methanogenesis alone or in syntrophic metabolism, methanogens must carefully regulate their catabolic pathways including the regulation of RNA transcripts. The transcriptome is a dynamic and important control point in microbial systems. This paper assesses the impact of mRNA (transcriptome) studies on the understanding of methanogenesis with special consideration given to how methanogenesis is regulated to cope with nutrient limitation, environmental variability, and interactions with syntrophic partners. In comparison with traditional microarray-based transcriptome analyses, next...

Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501

BMC Genomics, 2010

Background: Biological nitrogen fixation is highly controlled at the transcriptional level by regulatory networks that respond to the availability of fixed nitrogen. In many diazotrophs, addition of excess ammonium in the growth medium results in immediate repression of nif gene transcription. Although the regulatory cascades that control the transcription of the nif genes in proteobacteria have been well investigated, there are limited data on the kinetics of ammonium-dependent repression of nitrogen fixation. Results: Here we report a global transcriptional profiling analysis of nitrogen fixation and ammonium repression in Pseudomonas stutzeri A1501, a root-associated and nitrogen-fixing bacterium. A total of 166 genes, including those coding for the global nitrogen regulation (Ntr) and Nif-specific regulatory proteins, were upregulated under nitrogen fixation conditions but rapidly downregulated as early as 10 min after ammonium shock. Among these nitrogen fixation-inducible genes, 95 have orthologs in each of Azoarcus sp. BH72 and Azotobacter vinelandii AvoP. In particular, a 49-kb expression island containing nif and other associated genes was markedly downregulated by ammonium shock. Further functional characterization of pnfA, a new NifA-σ 54 -dependent gene chromosomally linked to nifHDK, is reported. This gene encodes a protein product with an amino acid sequence similar to that of five hypothetical proteins found only in diazotrophic strains. No noticeable differences in the transcription of nifHDK were detected between the wild type strain and pnfA mutant. However, the mutant strain exhibited a significant decrease in nitrogenase activity under microaerobic conditions and lost its ability to use nitrate as a terminal electron acceptor for the support of nitrogen fixation under anaerobic conditions.

Regulation of nif Expression in Methanococcus maripaludis

Journal of Biological Chemistry, 2004

The methanogenic archaean Methanococcus maripaludis can use ammonia, alanine, or dinitrogen as a nitrogen source for growth. The euryarchaeal nitrogen repressor NrpR controls the expression of the nif (nitrogen fixation) operon, resulting in full repression with ammonia, intermediate repression with alanine, and derepression with dinitrogen. NrpR binds to two tandem operators in the nif promoter region, nifOR 1 and nifOR 2. Here we have undertaken both in vivo and in vitro approaches to study the way in which NrpR, nifOR 1 , ni-fOR 2 , and the effector 2-oxoglutarate (2OG) combine to regulate nif expression, leading to a comprehensive understanding of this archaeal regulatory system. We show that NrpR binds as a dimer to nifOR 1 and cooperatively as two dimers to both operators. Cooperative binding occurs only with both operators present. nifOR 1 has stronger binding and by itself can mediate the repression of nif transcription during growth on ammonia, unlike the weakly binding nifOR 2. However, nifOR 2 in combination with nifOR 1 is critical for intermediate repression during growth on alanine. Accordingly, NrpR binds to both operators together with higher affinity than to nifOR 1 alone. NrpR responds directly to 2OG, which weakens its binding to the operators. Hence, 2OG is an intracellular indicator of nitrogen deficiency and acts as an inducer of nif transcription via NrpR. This model is upheld by the recent finding (J. A. Dodsworth and J. A. Leigh, submitted for publication) in our laboratory that 2OG levels in M. maripaludis vary with growth on different nitrogen sources.