A single-shot intensity-position monitor for hard x-ray FEL sources (original) (raw)

A single-shot intensity-position monitor for hard x-ray FEL sources

Proceedings of …, 2011

An inline diagnostics device was developed to measure the intrinsic shot-to-shot intensity and position fluctuations of the SASE-based LCLS hard X-ray FEL source. The device is based on the detection of back-scattered X-rays from a partially-transmissive thin target using a quadrant X-ray diode array. This intensity and position monitor was tested for the first time with FEL X-rays on the XPP instrument of the LCLS. Performance analyses showed that the relative precision for intensity measurements approached 0.1% and the position sensitivity was better than 5 μm, limited only by the Poisson statistics of the X-rays collected in a single shot. ; phone 1 650 926-2890; fax 1 650 926-3615.

Design and operation of a hard x-ray transmissive single-shot spectrometer at LCLS

Journal of Physics: Conference Series, 2013

We describe the design and operation of a transmissive single-shot spectrometer for the measurement of hard x-ray free electron laser (FEL) source spectrum at the Linac Coherent Light Source (LCLS). The spectrometer was built around a 10 µm thick near-perfect silicon single crystal that was cylindrically bent. Its energy range covered the full FEL bandwidth while its resolution was sufficient for resolving single spectral spikes characteristics of the FELs. Its application will not only greatly facilitate the understanding and optimization of the x-ray FEL sources, but can also serve as an invaluable inline diagnostic tool for experiments where the spectral content of the source plays an important role in data interpretation.

Development status of the X-ray beam diagnostics devices for the commissioning and user operation of the European XFEL

Journal of Physics: Conference Series, 2013

X-ray Free-Electron-Lasers (XFEL) as the Linac Coherent Light Source (LCLS) in the USA, SACLA in Japan, and the European XFEL under construction in Germany are 4 th generation light sources which allow research of at the same time extremely small structures (Ångström resolution) and extremely fast phenomena (femtosecond resolution). Unlike the pulses from a conventional optical laser, the radiation in these sources is created by the Self-Amplified Spontaneous Emission (SASE) process when electron bunches pass through very long segmented undulators. The shot noise at the origin of this process leads to significant pulse-to-pulse variations of pulse intensity, spectrum, wavefront, temporal properties etc. so that for user experiments an online monitoring of these properties is mandatory. Also, the adjustment of the long segmented undulators requires dedicated diagnostics such as an undulator commissioning spectrometer and spontaneous radiation analysis.

Development of a hard x-ray wavefront sensor for the EuXFEL

Advances in X-ray Free-Electron Lasers Instrumentation IV

We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Laser (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.

X-ray imaging detectors for synchrotron and XFEL sources

IUCrJ, 2015

Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

In situ high-speed synchrotron X-ray beam profiling and position monitoring

Sensors and Actuators A: Physical, 2007

To take advantage of the very low source emittance of third generation radiation sources high-resolution in situ X-ray beam monitors are required in order to keep the X-ray beam focussed and incident on the sample. We present a compact device based on a linear photodiode array. It consists of relatively few diodes that measure the spatially resolved scattered X-rays from a thin polymer foil placed in the beam path. The device is vacuum compatible, inexpensive and radiation hard. The scattered X-rays are incident on a strip of photodiodes that are connected to a dedicated multi-channel charge-sensitive read-out chip. Test experiments performed at the European Synchrotron Radiation Facility (ESRF) show, that even at a relatively low-intensity bending magnet beam line, X-ray beam position and profiles are obtained extremely fast and precise.

The ePix10k 2-megapixel hard X-ray detector at LCLS

Journal of Synchrotron Radiation

The ePix10ka2M (ePix10k) is a new large area detector specifically developed for X-ray free-electron laser (XFEL) applications. The hybrid pixel detector was developed at SLAC to provide a hard X-ray area detector with a high dynamic range, running at the 120 Hz repetition rate of the Linac Coherent Light Source (LCLS). The ePix10k consists of 16 modules, each with 352 × 384 pixels of 100 µm × 100 µm distributed on four ASICs, resulting in a 2.16 megapixel detector, with a 16.5 cm × 16.5 cm active area and ∼80% coverage. The high dynamic range is achieved with three distinct gain settings (low, medium, high) as well as two auto-ranging modes (high-to-low and medium-to-low). Here the three fixed gain modes are evaluated. The resulting dynamic range (from single photon counting to 10000 photons pixel−1 pulse−1 at 8 keV) makes it suitable for a large number of different XFEL experiments. The ePix10k replaces the large CSPAD in operation since 2011. The dimensions of the two detectors a...

Research and development for X-ray optics and diagnostics on the Linac Coherent Light Source (LCLS)

Free Electron Lasers 2002, 2003

The Linac Coherent Light Source (LCLS) is a 1.5 to 15~-wavelength free-electron laser (FEL), currently proposed for the Stanford Linear Accelerator Center (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration <300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: experimental and theoretical material damage studies; high resolution multilayer design, fabrication, and testing; replicated closed-form optics design and manufacturing; BeB manufacturing; and low-z Fresnel lens design, fabrication and testing. Finally some novel concepts for optical components are presented.

Femtosecond Radiation Experiment Detector for X-Ray Free-Electron Laser (XFEL) Coherent X-Ray Imaging

IEEE Transactions on Nuclear Science, 2010

A pixel array detector (PAD) module has been developed at Cornell University for the collection of diffuse diffraction data in anticipation of coherent X-ray imaging experiments that will be conducted at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The detector is designed to collect X-rays scattered from monochromatic femtosecond pulses produced by the LCLS X-ray laser at framing rates up to 120 Hz. Because X-rays will arrive on femtosecond time scales, the detector must be able to deal with instantaneous count-rates in excess of 10 17 photons per second per pixel. A low-noise integrating front-end allows the detector to simultaneously distinguish single photon events in low-flux regions of the diffraction pattern, while recording up to several thousand X-rays per pixel in more intense regions. The detector features a per-pixel programmable two-level gain control that can be used to create an arbitrary 2-D, two-level gain pattern across the detector; massively parallel 14-bit in-pixel digitization; and frame rates in excess of 120 Hz. The first full-scale detector will be 1516 1516 pixels with a pixel size of 110 110 microns made by tiling CMOS ASICs (Application Specific Integrated Circuits) that are bump-bonded to high-resistivity silicon diodes. X-ray testing data of the first 185 194 pixel bump-bonded ASICs is presented. These are tiled to make the final detector. The measurements presented include confirmation of single photon sensitivity, pixel response profiles indicating a nearly single-pixel point spread function, radiation damage measurements and noise performance.