Characterization of advanced drive system for hybrid electric vehicles (original) (raw)

The electric drive is a key component in a plug-in hybrid electric vehicle (PHEV). The ideal tendency is to use the electric machine over the entire torque/speed range. This paper presents the characterization of the electrical drive suitable for a recently proposed PHEV powertrain, and the design optimization of the electric machine. The newly proposed PHEV powertrain has only one electric machine functioning as either a motor or generator at a time, an energy storage unit consisting of battery and super-capacitor banks for fast charging/discharging during regenerative braking and fast acceleration/deceleration, and a transmission line consisting of two power split devices and a gearbox. The electric machine must be designed for frequent start/stop, fast acceleration/deceleration, high torque and power densities, and high efficiency at all speeds. The drive system was modeled and characterized by using MATLAB/SIMULINK and PSAT, while the machine design was conducted through electromagnetic field analysis by using ANSYS. The design optimization was carried out for four different electric machines, including a double salient permanent magnet (DSPM) machine, a hybrid excitation DSPM (HEDSPM) machine, and two fluxswitching permanent magnet (FSPM) machines of two different pole arrangements. The results show that the 6/7 pole FSPM machine has the best performance.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact