Propagation of coherent polarized light in turbid highly scattering medium (original) (raw)

Two electric field Monte Carlo models of coherent backscattering of polarized light

Journal of the Optical Society of America. A, Optics, image science, and vision, 2014

Modeling of coherent polarized light propagation in turbid scattering medium by the Monte Carlo method provides an ultimate understanding of coherent effects of multiple scattering, such as enhancement of coherent backscattering and peculiarities of laser speckle formation in dynamic light scattering (DLS) and optical coherence tomography (OCT) diagnostic modalities. In this report, we consider two major ways of modeling the coherent polarized light propagation in scattering tissue-like turbid media. The first approach is based on tracking transformations of the electric field along the ray propagation. The second one is developed in analogy to the iterative procedure of the solution of the Bethe-Salpeter equation. To achieve a higher accuracy in the results and to speed up the modeling, both codes utilize the implementation of parallel computing on NVIDIA Graphics Processing Units (GPUs) with Compute Unified Device Architecture (CUDA). We compare these two approaches through simula...

Graphics-processing-unit-accelerated Monte Carlo simulation of polarized light in complex three-dimensional media

Journal of Biomedical Optics, 2022

Significance: Monte Carlo (MC) methods have been applied for studying interactions between polarized light and biological tissues, but most existing MC codes supporting polarization modeling can only simulate homogeneous or multi-layered domains, resulting in approximations when handling realistic tissue structures. Aim: Over the past decade, the speed of MC simulations has seen dramatic improvement with massively parallel computing techniques. Developing hardware-accelerated MC simulation algorithms that can accurately model polarized light inside three-dimensional (3D) heterogeneous tissues can greatly expand the utility of polarization in biophotonics applications. Approach: Here, we report a highly efficient polarized MC algorithm capable of modeling arbitrarily complex media defined over a voxelated domain. Each voxel of the domain can be associated with spherical scatters of various radii and densities. The Stokes vector of each simulated photon packet is updated through photon propagation, creating spatially resolved polarization measurements over the detectors or domain surface. Results: We have implemented this algorithm in our widely disseminated MC simulator, Monte Carlo eXtreme (MCX). It is validated by comparing with a reference central-processing-unitbased simulator in both homogeneous and layered domains, showing excellent agreement and a 931-fold speedup. Conclusion: The polarization-enabled MCX offers biophotonics community an efficient tool to explore polarized light in bio-tissues, and is freely available at http://mcx.space/.

Monte Carlo study of pathlength distribution of polarized light in turbid media

Optics Express, 2007

Photon pathlength distributions as a function of the number of scattering events in cylindrical turbid samples are studied using a polarization-sensitive Monte Carlo model with linearly polarized light input. Sample scattering causes extensive depolarization, yielding a photon field comprised of polarized and depolarized sub-populations. It is found that the pathlength of polarization-preserving photons is distributed within a defined spatial range with strong angular dependence. This pathlength, averaged over the range, is 2-3X smaller than the one averaged over the widely-spread range of all (polarized + depolarized) collected photons. It is also demonstrated that changes in optical properties of the media affect the pathlength distributions.

Study of Scattering and Polarization of Light in Biological Tissues

2013

INTRODUCTION 1.1 State of-the-art 1.2 Objectives of the dissertation 2 SELECTED METHODS OF INVESTIGATION 2.1 Modeling of photon transport in tissue 9 2.1.1 Radiative transfer equation 3 EXPERIMENTAL RESULTS 3.1 Stokes vector polarimeter 3.2 Monte Carlo analysis of multiscattered light 3.2.1 Intensity and degree of polarization 3.2 Ageing process 4 CONCLUSION 5 REFERENCES

FullMonte: a framework for high-performance Monte Carlo simulation of light through turbid media with complex geometry

SPIE Proceedings, 2013

Emerging clinical applications including bioluminescence imaging require fast and accurate modelling of light propagation through turbid media with complex geometries. Monte Carlo simulations are widely recognized as the standard for high-quality modelling of light propagation in turbid media, albeit with high computational requirements. We present FullMonte: a flexible, extensible software framework for Monte Carlo modelling of light transport from extended sources through general 3D turbid media including anisotropic scattering and refractive index changes. The problem geometry is expressed using a tetrahedral mesh, giving accurate surface normals and avoiding artifacts introduced by voxel approaches. The software uses multithreading, Intel SSE vector instructions, and optimized data structures. It incorporates novel hardware-friendly performance optimizations that are also useful for software implementations. Results and performance are compared against existing implementations. We present a discussion of current state-of-the-art algorithms and accelerated implementations of the modelling problem. A new parameter permitting accuracy-performance tradeoffs is also shown which has significant implications including performance gains of over 25% for real applications. The advantages and limitations of both CPU and GPU implementations are discussed, with observations important to future advances. We also point the way towards custom hardware implementations with potentially large gains in performance and energy efficiency.

A Monte Carlo model of light propagation in tissue

1989

ABSTRACT The Monte Carlo method is rapidly becoming the model of choice for simulating light transport in tissue. This paper provides all the details necessary for implementation of a Monte Carlo program. Variance reduction schemes that improve the efficiency of the Monte Carlo method are discussed. Analytic expressions facilitating convolution calculations for finite flat and Gaussian beams are included. Useful validation benchmarks are presented.

Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media

Journal of Biomedical Optics, 2014

We present a coupled forward-adjoint Monte Carlo (cFAMC) method to determine the spatially resolved sensitivity distributions produced by optical interrogation of three-dimensional (3-D) tissue volumes. We develop a general computational framework that computes the spatial and angular distributions of the forward-adjoint light fields to provide accurate computations in mesoscopic tissue volumes. We provide full computational details of the cFAMC method and provide results for low-and high-scattering tissues probed using a single pair of optical fibers. We examine the effects of source-detector separation and orientation on the sensitivity distributions and consider how the degree of angular discretization used in the 3-D tissue model impacts the accuracy of the resulting absorption sensitivity profiles. We discuss the value of such computations for optical imaging and the design of optical measurements.

Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory

1989

Abstruct-Using optical interaction coefficients typical of mammalian soft tissues in the red and near infrared regions of the spectrum, calculations of fluence-depth distributions, effective penetration depths and diffuse reflectance from two models of radiative transfer, diffusion theory, and Monte Carlo simulation are compared for a semi-infinite medium. The predictions from diffusion theory are shown to be increasingly inaccurate as the albedo tends to zero andlor the average cosine of scatter tends to unity.