Extending a physiological forest growth model by an observation-based tree competition module improves spatial representation of diameter growth (original) (raw)

Possibilities and limitations of individual-tree growth models – A review on model evaluations

Die Bodenkultur: Journal of Land Management, Food and Environment

Summary Individual-tree growth models are the new standard for modeling growth and yield. Their main purpose is to simulate future forest management scenarios but they can also be used to predict wood quality, rockfall protection or habitat quality. Individual tree growth models may consist of different models but core models are diameter increment, height increment, crown ratio (often used as a predictor for increment) and mortality. The model differentiation is based on how these four models include tree age (size), competition and site. Four common growth simulators in Central Europe are BWIN, Moses, Prognaus and Silva. These four models are commonly deployed to simulate 30 years of growth, but a prospective application is the simulation of a whole rotation period (80–150 years). It is therefore crucial to understand the possibilities and limitations of these models by evaluating them. This review paper summarizes the statistical and emergent properties’ evaluation results for th...

Low Tree-Growth Elasticity of Forest Biomass Indicated by an Individual-Based Model

Forests

Environmental conditions and silviculture fundamentally alter the metabolism of individual trees and, therefore, need to be studied at that scale. However, changes in forest biomass density (Mg C ha −1) may be decoupled from changes in growth (kg C year −1) when the latter also accelerates the life cycle of trees and strains access to light, nutrients, and water. In this study, we refer to an individual-based model of forest biomass dynamics to constrain the magnitude of system feedbacks associated with ontogeny and competition and estimate the scaling relationship between changes in tree growth and forest biomass density. The model was driven by fitted equations of annual aboveground biomass growth (G ag), probability of recruitment (P r), and probability of mortality (P m) parameterized against field observations of black spruce (Picea mariana (Mill.) BSP), interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco), and western hemlock (Tsuga heterophylla (Raf.) Sarg.). A hypothetical positive step-change in mean tree growth was imposed half way through the simulations and landscape-scale responses were then evaluated by comparing pre-and post-stimulus periods. Imposing a 100% increase in tree growth above calibrated predictions (i.e., contemporary rates) only translated into 36% to 41% increases in forest biomass density. This corresponded with a tree-growth elasticity of forest biomass (ε G,SB) ranging from 0.33 to 0.55. The inelastic nature of stand biomass density was attributed to the dependence of mortality on intensity of competition and tree size, which decreased stand density by 353 to 495 trees ha −1 , and decreased biomass residence time by 10 to 23 years. Values of ε G,SB depended on the magnitude of the stimulus. For example, a retrospective scenario in which tree growth increased from 50% below contemporary rates up to contemporary rates indicated values of ε G,SB ranging from 0.66 to 0.75. We conclude that: (1) effects of warming and increasing atmospheric concentrations of carbon dioxide and reactive nitrogen on biomass production are greatly diminished, but not entirely precluded, scaling up from individual trees to forest landscapes; (2) the magnitude of decoupling is greater for a contemporary baseline than it is for a pre-industrial baseline; and (3) differences in the magnitude of decoupling among species were relatively small. To advance beyond these estimates, studies must test the unverified assumptions that effects of tree size and stand competition on rates of recruitment, mortality, and growth are independent of climate change and atmospheric concentrations of carbon dioxide and nitrogen.

A COMPARISON OF TREE GROWTH MODELS

Dale, V.H., Doyle, T.W. and Shugart, H.H., 1985. A comparison of tree growth models. Ecol. Modelling, 29: 145-169. Tree growth models project the growth and development of forest ecosystems by increasing the size of each simulated tree in the forest on an annual or greater periodic basis. These models are often referred to as 'tree models' because they are based on the birth, growth and death of individual trees, and the characteristics of individual trees are aggregated to describe the stand. This paper distinguishes between two types of models based upon their major purpose for development and data requirements. Forest growth models are defined as those used to assess the yield of a managed forest under prescribed conditions and usually require large calibration data sets. Community dynamics models are defined as those applied to ecological questions about the feedback of environment and species characteristics on growth and yield, and have species-specific rather than site-specific data requirements. The structure and data requirements for each model type affects their regional and temporal applicability as well as their predictive value. A combination approach using the two types of models may be the most general model of tree growth and stand development.

Comparison of a physiological model and a statistical model for prediction of growth and yield in boreal forests

Ecological Modelling, 2003

The structural and functional properties of a physiological model (FinnFor) and a statistical model (Motti), developed independently, were analysed in order to assess whether the former would provide the same prediction capacity as the latter, which is based on a huge body of long-term inventory data. The predictions were compared in terms of (i) stand-level variables, (ii) analysis of volume growth graphs, and (iii) stand structure variables (diameter and height distributions). Both unmanaged and managed (thinned) stands of Scots pine (Pinus sylvestris ), Norway spruce (Picea abies ) and silver birch (Betula pendula ) growing on medium-fertility sites in central Finland were used for the comparison. In general, the outputs of the models agreed well in terms of relative growth rates regardless of tree species, with the implication that both predict competition within a stand and the effect of position on tree growth in a similar way. The statistical model was stable in its predictions, but not as sensitive to initial stand conditions and management as that based on physiological processes, but the two models agreed well in their dynamics and predictions. The processbased model may therefore be applied to practical management situations, in order to achieve more precise predictions under changing environmental conditions, as in the case of climate warming. On the other hand, some elements of process-model thinking could be incorporated into statistical models in order to make these responsive to changing conditions. # (J. Matala).

Estimating growth in beech forests: a study based on long term experiments in Switzerland

Annals of Forest Science, 2010

• This contribution presents a dynamic stand growth model for Beech (Fagus sylvatica L.) forests, based on a dataset provided by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf. The dataset includes 143 research plots, covering a wide range of growing sites and providing up to 16 interval measurements per research plot. • The objective of this research is to complement the range of existing beech growth models by bridging the gap between the historical yield tables and the single tree growth models. The specific aim is to develop transition functions which will project three state variables (dominant height, basal area and number of trees per hectare) at any particular time, in response to any arbitrary silvicultural treatment. • Two of the transition functions were derived using the generalized algebraic difference approach (GADA), the third one was derived with the algebraic difference approach (ADA). All the functions were fitted simultaneously using iterative seemingly unrelated regression and a base-age-invariant method. The influence of thinnings on basal area growth was included by fitting different transition functions for thinned and unthinned stands. • The overall model provides satisfactory predictions for time intervals up to 20 years. The new model is robust and its relatively simple structure makes it suitable for economic analysis and decision support. • Cette contribution présente un modèle dynamique de croissance des peuplements de hêtres (Fagus sylvatica L.), basé sur un ensemble de données fournies par l’Institut Fédéral Suisse de Recherche sur la Forêt, la Neige et le Paysage, WSL à Birmensdorf. L’ensemble des données comprend 143 parcelles de recherche, couvrant un large éventail de sites et fournissant jusqu’à 16 intervalles de mesures par parcelle de recherche. • L’objectif de cette recherche est de compléter la gamme de modèles de croissance du hêtre existants, en jetant un pont entre les tables de production historiques et les modèles de croissance d’arbre. L’objectif spécifique est de développer des fonctions de transition qui projeterons trois variables d’état (hauteur dominante, surface terrière et nombre d’arbres par hectare) à n’importe quel moment déterminé, en réponse à n’importe quel traitement sylvicole arbitraire. • Deux des fonctions de transition ont été calculées en utilisant l’approche différence algébrique généralisée (GADA), la troisième a été dérivée de l’approche différence algébrique (ADA). Toutes les fonctions ont été ajustées en utilisant simultanément une régression itérative sans lien apparent et une méthode basée sur l’invariance de l’âge. L’influence des éclaircies sur la croissance de la surface terrière a été inclue en ajustant différentes fonctions de transition pour les peuplements éclaircis et les peuplements non éclaircis. • Le modèle général fournit des prédictions satisfaisantes pour des intervalles de temps jusqu’à 20 ans. Le nouveau modèle est robuste et sa structure relativement simple fait qu’il est convient pour l’analyse économique et l’aide à la décision.

Comparing individual-tree growth models using principles of stand growth for Norway spruce, Scots pine and European beech

Canadian Journal of Forest Research, 2015

We examined the relationship between thinning intensity and volume increment predicted by four commonly used individual-tree growth models in Central Europe (i.e., BWIN, Moses, Prognaus, and Silva). We replicated conditions of older growth and yield experiments by selecting 34 young, dense plots of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and European beech (Fagus sylvatica L.). At these plots, we simulated growth, with mortality only, to obtain the maximum basal area. Maximum basal area was then decreased by 5% or 10% steps using thinning from below. Maximum density varied considerably between simulators; it was mostly in a reasonable range but partly exceeded the maximum basal area observed by the Austrian National Forest Inventory or the self-thinning line. In almost all cases, simulated volume increment was highest at maximum basal area and then decreased with decreasing basal area. Critical basal area, at which 95% of maximum volume increment c...

Modelling growth in managed forests — realism and limits of lumping

Science of The Total Environment, 1996

The level of detail of forest growth models differs greatly. Individual tree models deal with morphological details of branching, stem form and root growth. Forest models produce aggregate information about the development of a population of trees with a given set of environmental conditions. Different levels of resolution are discussed using examples of modelling site and competition, intermittent modification of stand structure through thinning, tree geometry and regeneration and mortality.

Parametric identification of a functional–structural tree growth model and application to beech trees ( Fagus sylvatica )

Functional Plant Biology, 2008

Functional-structural models provide detailed representations of tree growth and their application to forestry seems full of prospects. However, due to the complexity of tree architecture, parametric identification of such models remains a critical issue. We present the GreenLab approach for modeling tree growth. It simulates tree plasticity in response to changes of their internal level of trophic competition, especially regarding topological development and cambial growth. The model includes a simplified representation of tree architecture, based on a species-specific description of branching patterns. We study whether those simplifications allow enough flexibility to reproduce with the same set of parameters the growth of two observed understorey Beech trees (Fagus sylvatica, L.) of different ages and in different environmental conditions. The parametric identification of the model is global, i.e. all parameters are estimated simultaneously, potentially providing a better description of interactions between subprocesses. As a result, the source-sink dynamics throughout tree development is retrieved. Simulated and measured trees were compared for their trunk profiles (fresh masses and dimensions of every growth units, ring diameters at different heights) and for the compartment masses of their order 2 branches. Possible improvements of this method by including topological criteria are discussed.

Species-specific, pan-European diameter increment models based on data of 2.3 million trees

Forest Ecosystems

Background: Over the last decades, many forest simulators have been developed for the forests of individual European countries. The underlying growth models are usually based on national datasets of varying size, obtained from National Forest Inventories or from long-term research plots. Many of these models include country-and location-specific predictors, such as site quality indices that may aggregate climate, soil properties and topography effects. Consequently, it is not sensible to compare such models among countries, and it is often impossible to apply models outside the region or country they were developed for. However, there is a clear need for more generically applicable but still locally accurate and climate sensitive simulators at the European scale, which requires the development of models that are applicable across the European continent. The purpose of this study is to develop tree diameter increment models that are applicable at the European scale, but still locally accurate. We compiled and used a dataset of diameter increment observations of over 2.3 million trees from 10 National Forest Inventories in Europe and a set of 99 potential explanatory variables covering forest structure, weather, climate, soil and nutrient deposition. Results: Diameter increment models are presented for 20 species/species groups. Selection of explanatory variables was done using a combination of forward and backward selection methods. The explained variance ranged from 10% to 53% depending on the species. Variables related to forest structure (basal area of the stand and relative size of the tree) contributed most to the explained variance, but environmental variables were important to account for spatial patterns. The type of environmental variables included differed greatly among species. Conclusions: The presented diameter increment models are the first of their kind that are applicable at the European scale. This is an important step towards the development of a new generation of forest development simulators that can be applied at the European scale, but that are sensitive to variations in growing conditions and applicable to a wider range of management systems than before. This allows European scale but detailed analyses concerning topics like CO 2 sequestration, wood mobilisation, long term impact of management, etc.