On the key estimate for variable exponent spaces (original) (raw)

Abstract

The so-called key estimate is a fundamental tool for variable exponent spaces. Among other things it implies the boundedness of the Hardy-Littlewood maximal operator, which opens the door to the tools of harmonic analysis. We give a survey on the key estimate and present an improved version, which allows to apply the key estimate to a larger class of functions and provides better error estimates.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (14)

  1. E. Acerbi and G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math. 584 (2005), 117148.
  2. D. Breit, L. Diening, and S. Schwarzacher, On the finite element approximation of the p(•)-Laplacian, in preparation (2013).
  3. Variable Lebesgue spaces, Birkhäuser GmbH, 2013.
  4. D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223238.
  5. L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta, and T. Shimomura, Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math. 34 (2009), 503522.
  6. L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, 1st ed., Lecture Notes in Mathematics, vol. 2017, Springer, 2011.
  7. L. Diening, P. Hästö, and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal. 256 (2009), no. 6, 17311768.
  8. L. Diening, Maximal function on generalized Lebesgue spaces L p(•) , Math. Inequal. Appl. 7 (2004), no. 2, 245253.
  9. Lebesgue and sobolev spaces with variable exponent, Habilitation, University of Freiburg, 2007.
  10. L. Diening and S. Schwarzacher, Global gradient estimates for the p(•)-Laplacian, in preparation (2013).
  11. W. Orlicz, Über konjugierte Exponentenfolgen., Stud. Math. 3 (1931), 200211 (Ger- man).
  12. S. Schwarzacher, Higher integrability of elliptic differential equations with variable growth, Masters thesis, University of Freiburg, Germany, 2010.
  13. L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483493.
  14. L. Diening LMU Munich, Institute of Mathematics, Theresienstr. 39, 80333-Munich, Germany E-mail: diening@math.lmu.de S. Schwarzacher LMU Munich, Institute of Mathematics, Theresienstr. 39, 80333-Munich, Germany E-mail: schwarz@math.lmu.de