On the key estimate for variable exponent spaces (original) (raw)
Abstract
The so-called key estimate is a fundamental tool for variable exponent spaces. Among other things it implies the boundedness of the Hardy-Littlewood maximal operator, which opens the door to the tools of harmonic analysis. We give a survey on the key estimate and present an improved version, which allows to apply the key estimate to a larger class of functions and provides better error estimates.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (14)
- E. Acerbi and G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math. 584 (2005), 117148.
- D. Breit, L. Diening, and S. Schwarzacher, On the finite element approximation of the p(•)-Laplacian, in preparation (2013).
- Variable Lebesgue spaces, Birkhäuser GmbH, 2013.
- D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223238.
- L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta, and T. Shimomura, Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math. 34 (2009), 503522.
- L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, 1st ed., Lecture Notes in Mathematics, vol. 2017, Springer, 2011.
- L. Diening, P. Hästö, and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal. 256 (2009), no. 6, 17311768.
- L. Diening, Maximal function on generalized Lebesgue spaces L p(•) , Math. Inequal. Appl. 7 (2004), no. 2, 245253.
- Lebesgue and sobolev spaces with variable exponent, Habilitation, University of Freiburg, 2007.
- L. Diening and S. Schwarzacher, Global gradient estimates for the p(•)-Laplacian, in preparation (2013).
- W. Orlicz, Über konjugierte Exponentenfolgen., Stud. Math. 3 (1931), 200211 (Ger- man).
- S. Schwarzacher, Higher integrability of elliptic differential equations with variable growth, Masters thesis, University of Freiburg, Germany, 2010.
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483493.
- L. Diening LMU Munich, Institute of Mathematics, Theresienstr. 39, 80333-Munich, Germany E-mail: diening@math.lmu.de S. Schwarzacher LMU Munich, Institute of Mathematics, Theresienstr. 39, 80333-Munich, Germany E-mail: schwarz@math.lmu.de