The crystal structure of plant acetohydroxy acid isomeroreductase complexed with NADPH, two magnesium ions and a herbicidal transition state analog determined at 1.65 A resolution (original) (raw)

Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides

The FEBS journal, 2017

Acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6) is the first enzyme in the branched-chain amino acid biosynthesis pathway. Five of the most widely used commercial herbicides (i.e. sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinyl-benzoates and sulfonylamino-cabonyl-triazolinones) target this enzyme. Here we have determined the first crystal structure of a plantAHAS in the absence of any inhibitor (2.9 Å resolution) and itshows that the herbicide-binding site adopts a folded state even in the absence of an inhibitor. This is unexpected because the equivalent regions for herbicide bindingin uninhibited Saccharomyces cerevisiae AHAS crystal structures are either disordered,or adopt a different fold when the herbicide is not present. In addition, the structure provides anexplanation as to why some herbicides are more potent inhibitorsofArabidopsis thaliana AHAS compared to AHASs from other species (e.g.Saccharomyces cerevisiae). The elucidation of the native structure of pl...

Interactions of plant acetohydroxy acid isomeroreductase with reaction intermediate analogues: correlation of the slow, competitive, inhibition kinetics of enzyme activity and herbicidal effects

The Biochemical journal, 1994

N-Hydroxy-N-isopropyloxamate (IpOHA) is known to inhibit extremely tightly (Ki of 22 pM) the bacterial acetohydroxy acid isomeroreductase (EC 1.1.1.86) [Aulabaugh and Schloss (1990) Biochemistry 29, 2824-2830], the second enzyme of the branched-chain-amino-acid-biosynthetic pathway. Yet, although the same pathway exists in plant cells, this compound presents only very poor herbicidal action. Towards the goal of gaining a better understanding of this behaviour, we have studied the mechanism of interaction of this compound with a highly purified acetohydroxy acid isomeroreductase of plant origin, i.e. the spinach (Spinacia oleracea) chloroplast enzyme. IpOHA behaved as a nearly irreversible inhibitor of the enzyme. Encounter complex formation was very slow (association rate constant 1.9 x 10(3) M-1.s-1) and involved a single bimolecular step. Since inhibition was competitive with respect to acetohydroxy acid substrates, the time needed to achieve substantial (90%) inhibition in vitro ...

Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase

Proceedings of the National Academy of Sciences, 2006

The sulfonylureas and imidazolinones are potent commercial herbicide families. They are among the most popular choices for farmers worldwide, because they are nontoxic to animals and highly selective. These herbicides inhibit branched-chain amino acid biosynthesis in plants by targeting acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This report describes the 3D structure of Arabidopsis thaliana AHAS in complex with five sulfonylureas (to 2.5 Å resolution) and with the imidazolinone, imazaquin (IQ; 2.8 Å). Neither class of molecule has a structure that mimics the substrates for the enzyme, but both inhibit by blocking a channel through which access to the active site is gained. The sulfonylureas approach within 5 Å of the catalytic center, which is the C2 atom of the cofactor thiamin diphosphate, whereas IQ is at least 7 Å from this atom. Ten of the amino acid residues that bind the sulfonylureas also bind IQ. Six additional residues interact only with the sulfonylureas, whereas there...

Crystallization ofArabidopsis thalianaacetohydroxyacid synthase in complex with the sulfonylurea herbicide chlorimuron ethyl

Acta Crystallographica Section D Biological Crystallography, 2003

Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyses the formation of 2-acetolactate and 2-aceto-2-hydroxybutyrate as the ®rst step in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. The enzyme is inhibited by a wide range of substituted sulfonylureas and imidazolinones and many of these compounds are used as commercial herbicides. Here, the crystallization and preliminary X-ray diffraction analysis of the catalytic subunit of Arabidopsis thaliana AHAS in complex with the sulfonylurea herbicide chlorimuron ethyl are reported. This is the ®rst report of the structure of any plant protein in complex with a commercial herbicide. Crystals diffract to 3.0 A Ê resolution, have unitcell parameters a = b = 179.92, c = 185.82 A Ê and belong to space group P6 4 22. Preliminary analysis indicates that there is one monomer in the asymmetric unit and that these are arranged as pairs of dimers in the crystal. The dimers form a very open hexagonal lattice, with a high solvent content of 81%.

Structure and mechanism of inhibition of plant acetohydroxyacid synthase

Plant Physiology and Biochemistry, 2008

Plants and microorganisms synthesize valine, leucine and isoleucine via a common pathway in which the first reaction is catalysed by acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This enzyme is of substantial importance because it is the target of several herbicides, including all members of the popular sulfonylurea and imidazolinone families. However, the emergence of resistant weeds due to mutations that interfere with the inhibition of AHAS is now a worldwide problem. Here we summarize recent ideas on the way in which these herbicides inhibit the enzyme, based on the 3D structure of Arabidopsis thaliana AHAS. This structure also reveals important clues for understanding how various mutations can lead to herbicide resistance.

The mode of action and the structure of a herbicide in complex with its target: binding of activated hydantocidin to the feedback regulation site of adenylosuccinate synthetase

Proceedings of the National Academy of Sciences, 1996

+)-Hydantocidin, a recently discovered natural spironucleoside with potent herbicidal activity, is shown to be a proherbicide that, after phosphorylation at the 5' position, inhibits adenylosuccinate synthetase, an enzyme involved in de novo purine synthesis. The mode of binding of hydantocidin 5'-monophosphate to the target enzyme was analyzed by determining the crystal structure of the enzymeinhibitor complex at 2.6-A resolution. It was found that adenylosuccinate synthetase binds the phosphorylated compound in the same fashion as it does adenosine 5'monophosphate, the natural feedback regulator of this enzyme. This work provides the first crystal structure of a herbicide-target complex reported to date.

Crystal structure of the ternary complex of 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea with NADPH and an active-site Inhibitor Arnold Andersson, Douglas Jordan, Gunter Schneider and Ylva Lindqvist (1996). Structure 4, 1161–1170

Chemistry & Biology, 1996

Background: The enzyme 1,3,8-trihydroxynaphthalene reductase (THNR) catalyzes an essential reaction in the biosynthesis of melanin, a black pigment crucial for the pathogenesis of the rice blast fungus, Magnaporthe grisea. The enzyme is the biochemical target of several commercially important fungicides which are used to prevent blast disease in rice plants. We have determined the structure of the ternary complex of THNR with bound NADPH and a fungicide, tricyclazole. Results: Crystallographic analysis showed four identical subunits of THNR to form a tetramer with 222 symmetry. The enzyme subunit consists of a single domain comprising a seven-stranded ␤ sheet flanked by eight ␣ helices; the subunit contains a dinucleotide-binding fold which binds the coenzyme, NADPH. Tricyclazole, an inhibitor of the enzyme, binds at the active site in the vicinity of the NADPH nicotinamide ring. The active site contains a Ser-Tyr-Lys triad which is proposed to participate in catalysis. Coenzyme specificity is partly conferred by the interaction of a single basic residue, Arg39, with the 2′ phosphate group of NADPH. Conclusions: The structural model reveals THNR to belong to the family of short chain dehydrogenases. Despite the diversity of the chemical reactions catalyzed by this family of enzymes, their tertiary structures are very similar. In particular THNR has many amino acid sequence identities, and thus most probably high structural similarities, to enzymes involved in fungal aflatoxin synthesis. The structure of THNR in complex with NADPH and tricyclazole provides new insights into the structural basis of inhibitor binding. This new information may aid in the design of new inhibitors for rice crop protection.

Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors1

Journal of Molecular Biology, 2002

Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the ®rst step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A Ê resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are de®ned. The structure of AHAS provides a starting point for the rational design of new herbicides.