Power system stability and control (original) (raw)
Related papers
Power Systems Control and Stability 2nd
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
Researchpaper FACTS-A-Revolution-for-Improvement-of-Power-System-Stability
In this paper we discuss about the facts role for improvement of power system stability. A power system is a combination of generation, transmission and distribution and covers a wide area with number of connections. In such large area no of interruptions occurs which effect the efficiency as well as stability of electrical energy.
Power System Voltage Stability and Control A Review
2012
At the recent years, power system becomes a large complex interconnected network that contains of hundreds of buses and generating stations. In addition, to provide the required power, new installation of power generators and transmission lines are required. Due to the environmental and economic constraints of installation of new generators and increasing demands, transmission line flows has been increased on the existing transmission lines which may increase the risk of losing voltage stability and blackouts in the system. This paper presents an overview on definition and principles of voltage stability. Furthermore, common proposed techniques in the literature to enhance the steady-state voltage stability, such as excitation control and FACTS devices are also addressed.
power system stability analysis
Successful operation of a power system depends largely on the engineer's ability to provide reliable and uninterrupted service to the loads. The reliability of the power supply implies much more than merely being available. Ideally, the loads must be fed at constant voltage and frequency at all times. The first requirement of reliable service is to keep the synchronous generators running in parallel and with adequate capacity to meet the load demand [1]. Synchronous machines do not easily fall out of step under normal conditions. If a machine tends to speed up or slow down, synchronizing forces tend to keep it in step. Conditions do arise, however, such as a fault on the network, failure in a piece of equipment, sudden application of a major load such as a steel mill, or loss of a line or generating unit., in which operation is such that the synchronizing forces for one or more machines may not be adequate, and small impacts in the system may cause these machines to lose synchronism [3]. A second requirement of reliable electrical service is to maintain the integrity of the power network. The high-voltage transmission system connects the generating stations and the load centers. Interruptions in this network may hinder the flow of power to the load. This usually requires a study of large geographical areas since almost all power systems are interconnected with neighboring systems. Random changes in load are taking place at all times, with subsequent adjustments of generation [1]. We may look at any of these as a change from one equilibrium state to another. Synchronism frequently may be lost in that transition period, or growing oscillations may occur over a transmission line, eventually leading to its tripping. These problems must be studied by the power system engineer and fall under the heading "power system stability”.
Power System Dynamics: Stability and Control
2008
About The Authors. Preface. Acknowledgements. List of Symbols. PART I: INTRODUCTION TO POWER SYSTEMS. 1 Introduction . 1.1 Stability and Control of a Dynamic System. 1.2 Classification of Power System Dynamics. 1.3 Two Pairs of Important Quantities: Reactive Power/Voltage and Real Power/Frequency. 1.4 Stability of Power System. 1.5 Security of Power System. 1.6 Brief Historical Overview. 2. Power System Components. 2.1 Structure of the Electrical Power System. 2.2 Generating Units. 2.3 Substations. 2.4 Transmission and Distribution Network. 2.5 Protection. 2.6 Wide Area Measurement Systems. 3. The Power System in the Steady-State. 3.1. Transmission Lines. 3.2. Transformers. 3.3. Synchronous Generators. 3.4. Power System Loads. 3.5. Network Equations. 3.6. Power Flows in Transmission Networks. PART II: INTRODUCTION TO POWER SYSTEM DYNAMICS. 4. Electromagnetic Phenomena. 4.1. Fundamentals. 4.2. Three-Phase Short-Circuit on a Synchronous Generator. 4.3. Phase-to-Phase Short-Circuit. 4....
Enhancement of Power System Stability
2011
This paper will discuss and demonstrate how Static Var Compensator (SVC) has successfully been applied to control transmission systems dynamic performance for system disturbance and effectively regulate system voltage. SVC is basically a shunt connected static var generator whose output is adjusted to exchange capacitive or inductive current so as to maintain or control specific power variable; typically, the control variable is the SVC bus voltage. One of the major reasons for installing a SVC is to improve dynamic voltage control and thus increase system load ability. There are the mainly accomplishes work to construct an effective for SVC. Firstly, to design a controller for SVC devices on transmission lines, a Single Machine Infinite Bus (SMIB) system is modeled. In this paper, simple circuit model of Thyristor Controlled Reactor is simulated.
Stability Study of Power System
The theory of power system stability, necessary of power system stability and different methods for analysis of power system stability has been developed in this paper. The objective of this paper is to investigate and understand the stability of power system, with the main focus on stability theories and power system modeling. The paper first explained the definition of power system stability and the need for power system stability studies. Next the paper examined the concept of system stability and some stability theories. The paper then performed a power system modeling and simulation of a twomachine, three bus power systems. The performance of the power system was simulated. The operating points and system parameters were varied to test the robustness of the power system. From various stability systems, in this paper, only transient analysis is studied. Examples of the parameters that were varied include the fault position λ, the power angle δ and the mechanical power input Pm . A software using MATLAB has been developed for this purpose. Finally we compare various stability responses by varying power angle, fault position and mechanical power.