Experimental Investigation of Al2O3 - Water Ethylene Glycol Mixture Nanofluid Thermal Behaviour in a Single Cooling Plate for PEM Fuel Cell Application (original) (raw)
Related papers
Numerical analysis of thermal enhancement for a single Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is presented in this paper. A low concentration of Al2O3 in Water - Ethylene Glycol mixtures was used as coolant in 220mm x 300mm cooling plate with 22 parallel mini channels of 1 x 5 x 100mm. This cooling plate mimicked conventional PEMFC cooling plate as it was made of carbon graphite. Large header was added to have an even velocity distribution across all Re number studied. The cooling plate was subjected to a constant heat flux of 100W that represented the artificial heat load of a single cell. Al2O3 nano particle volume % concentration of 0.1 and 0.5 vol was dispersed in 50:50 (water: Ethylene Glycol) mixtures. The effect of different flow rates to heat transfer enhancement and fluid flow in Re range of 30 to 150 were observed. The result showed that thermal performance has improved by 7.3 and 4.6% for 0.5 and 0.1 vol % Al2O3 consecutively in 50:50 (water:EG) as compared to base fluid of 50:50 (water:EG). It is shown that the higher vol % concentration of Al2O3 the better the heat transfer enhancement but at the expense of higher pumping power required as much as 0.04W due to increase in pressure drop. The positive thermal results implied that Al2O3 nanofluid is a potential candidate for future applications in PEM fuel cell thermal management
2015
Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement b...
Nanofluid is an emerging technology in heat transfer study. The effect of nanofluids as a cooling medium in liquid cooled Proton Exchange Membrane Fuel Cell (PEMFC) is studied. Nanofluids with 0.1% and 0.5% volume concentration of Al2O3 are dispersed in base fluid of 50:50 mixture of Ethylene Glycol and water were analyzed experimentally. A rated power of 400 W liquid cooled PEMFC was used to verify the findings. The result showed that insignificant improvement in performance of PEMFC with nanofluids through polarization curve findings, perhaps due to the lower wattage of PEMFC used. The advantage of nanofluids utilization in PEMFC might be visible in higher wattage of PEMFC due to higher working fluid temperature. Higher thermal conductivity of nanofluid at higher temperature is expected to give advantage in terms of polarization curve of a PEMFC. However, the thermal performance is improved through the heat transfer rate increment of 68.5 % and 46 % for both 0.5 % of Al2O3 nanofluid and 0.1 % of Al2O3 nanofluid respectively.
2018
PEM fuel cell converts the energy potential of a hydrogen based fuel into electricity with water and heat as the major by-products. In order to optimize the performance of a PEM fuel cell, the cooling system is responsible to manage the accompanying heat. In this study, heat transfer and fluid flow performance of Aluminium oxide, Al2O3 nanofluids in a serpentine cooling plate is investigated numerically. The Al2O3 nanofluids concentration of 0.1%, 0.3% and 0.5% was dispersed in both water and 60:40 and 50:50 water:ethylene glycol (w:EG) mixture of base fluids. The thermo-physical properties of the prepared nanofluids namely thermal conductivity and viscosity were measured and then fed to the simulation to enable maximum accuracy to the real experimentation result. A steady and incompressible flow with constant heat flux is assumed in the carbon graphite channel of 210mm x 220mm. All characteristics studied is at Re number range of 150 to 400. A serpentine cooling plate is used to mimic a single cooling plate in a complete stack of PEM fuel cell. The simulation used was ANSYS Fluent in laminar flow condition. The result shows that the heat transfer coefficient of 0.5 % volume concentration of Al2O3 in 100:0(w:EG) has increased up to 37 % as compared to base fluid. The increase in pumping power is experienced but at a much lower value as compared to the thermal management advantage.
The Characteristics of Hybrid Al2O3:SiO2 Nanofluids in Cooling Plate of PEMFC
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2021
A Proton Electrolyte Membrane fuel cells (PEMFC) is considered to be a viable alternatives to Internal Combustion Engines (ICEs) in automotive applications due to the key advantages in thermal management system. The main duty of thermal management system is to maintain the desirable temperature, with a uniform temperature distribution across the stack and.its.individual membranes. In this paper, the thermal enhancement of a PEMFC cooling plate was analysed and presented. The hybrid Al₂O₃:SiO₂ was used as coolant in distributor cooling plate. The study focuses on water based 0.5% volume concentration of single Al₂O₃ , single SiO₂ nanofluids, hybrid Al₂O₃:SiO nanofluids with mixture ratio of 10:90, 20:80, 50:50, 60:40 and 90:10. The effect of different ratios of nanofluids to heat transfer enhancement and fluid flow in Reynold number range of 400 to 2000 was observed. A 3D computational fluid dynamic (CFD) was developed based on distributor cooling plates using Ansys 16.0. Positive he...
Pertanika Journal of Science and Technology, 2022
Proton Exchange Membrane Fuel Cell (PEMFC) generates electricity through the reaction of hydrogen and oxygen. PEMFC is considered clean technology since the by-products of the reaction are only electricity, water, and heat. Thermal management of PEMFC can be further improved through the adoption of nanofluids as its cooling medium. Nanofluids are fluids that contain suspensions of nanoparticles in their base fluid. Nanofluids have better heat transfer performance as compared to their base fluid due to their significant thermal conductivity improvement. However, unlike any other heat transfer application, there is a strict limit on the electrical conductivity of the nanofluids due to their electrically active environment. Therefore, there is a possible current leakage to the coolant due to the nanofluids’ conductive behavior. In this study, heat transfer performance and current drop of 0.5% Al2O3 and 0.5% SiO2 water were investigated. The nanofluids were forced to flow in a charged c...
Abstract. Tremendous need for an optimum conversion efficiency of a Polymer Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Excellent heat dissipation is correlated to higher performance of a fuel cell thus increasing its conversion efficiency. This study reveals the potential advancement in thermal engineering of a fuel cell stack related to nanofluid technology. Nanofluids are seen as a potential evolution of nano technology hybridisation with fuel cell serving as a cooling medium. The thermophysical characteristics have been reviewed and challenges with regards to fuel cell application is discussed. Nanofluid has been successfully tested on many thermal management systems isolated from thermoelectrical environments such as fuel cell. The main challenge is formulating a nanofluid coolant with high thermal conductivity but with strict limit on electrical conductivity of less than 5 S/cm. Lack of electrical conductivity data for various nanofluids in open literature is another challenge in nanofluid application in fuel cell.
Advanced Materials Research, 2015
Tremendous need for an optimum conversion efficiency of a Polymer Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Excellent heat dissipation is correlated to higher performance of a fuel cell thus increasing its conversion efficiency. This study reveals the potential advancement in thermal engineering of a fuel cell stack related to nanofluid technology. Nanofluids are seen as a potential evolution of nano technology hybridisation with fuel cell serving as a cooling medium. The thermophysical characteristics have been reviewed and challenges with regards to fuel cell application is discussed. Nanofluid has been successfully tested on many thermal management systems isolated from thermoelectrical environments such as fuel cell. The main challenge is formulating a nanofluid coolant with high thermal conductivity but with strict limit on electrical conductivity of less than 5 µS/cm. Lack of electrical conductivity data for various nanofluids in open literature is another challenge in nanofluid application in fuel cell.
Continuous need for the optimum conversion efficiency of polymer electrolyte membrane fuel cell (PEMFC) operation has triggered varieties of advancements, namely in the thermal management engineering scope. Excellent heat dissipation is correlated with higher performance of a fuel cell, thus increasing its conversion efficiency. This study reveals the potential advancement in thermal engineering of a fuel cell cooling system with respect to nanofluid technology. Nanofluids are seen as a potential evolution of nanotechnology hybridization with the fuel cell serving as a cooling medium. The available literature on the thermophysical properties of potential nanofluids, especially on the electrical conductivity property, has been discussed. The lack of electrical conductivity data for various nanofluids in open literature was another challenge in the application of nanofluids in fuel cells. Unlike in any other thermal management system, a nanofluid in a fuel cell is dealt with using a thermoelectrically active environment. The main challenge in nanofluid adoption in fuel cells was the formulation of a suitable nanofluid coolant with heat transfer enhancement, as compared to its base fluid, but still complying with the strict limits of electrical conductivity as low as 2 S/cm and several other restrictions discussed by the researchers. It is concluded that a nanofluid in PEMFC is advantageous in terms of both heat transfer and simplification of the cooling system through radiator size reduction and potential elimination of the deionizer as compared to the current PEMFC cooling system. However, there are challenges that need to be well addressed, especially in the electrical conductivity requirement
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Proton Exchange Membrane Fuel Cell (PEMFC) is an alternative energy application for vehicular power sources and is a strong contender for clean and efficient power generation. However, the heat generated by the PEMFC need to be taken care of efficiently as to avoid damage to fuel cell component especially membrane due to overheat. Excessive heat can also lead to performance deterioration of PEMFC. In this study, the heat transfer performance of Aluminium Oxide (Al2O3) and Silicon Dioxide (SiO2) in water with low concentration value of 0.1 %, 0.3 % and 0.5 % volume were adopted as cooling medium in PEMFC. The simulation software used was ANSYS Fluent in laminar flow condition. The nanofluids studied were applied in a carbon graphite serpentine cooling plate of PEMFC which was subjected to a constant heat flux of 300 W. The heat flux mimicked the heat received during actual reaction in PEMFC. The result shows that maximum improvement was at 2.14 % improvement in Al2O3 and 1.15 % improvement in SiO2 in term of heat transfer coefficient of 0.5 % volume concentration as compared to water. This is due to the superior thermal conductivity of nanofluids as compared to base fluid. The improved Brownian motion has enabled such excellent heat transfer. However, the improvement was also accompanied by the pressure drop increment as compared to base fluid water.