The autonomic nervous system regulates postprandial hepatic lipid metabolism (original) (raw)
2013, AJP: Endocrinology and Metabolism
The liver is a key organ in controlling glucose and lipid metabolism during feeding and fasting. In addition to hormones and nutrients, inputs from the autonomic nervous system are also involved in fine-tuning hepatic metabolic regulation. Previously, we have shown in rats that during fasting an intact sympathetic innervation of the liver is essential to maintain the secretion of triglycerides by the liver. In the current study, we hypothesized that in the postprandial condition the parasympathetic input to the liver inhibits hepatic VLDL-TG secretion. To test our hypothesis, we determined the effect of selective surgical hepatic denervations on triglyceride metabolism after a meal in male Wistar rats. We report that postprandial plasma triglyceride concentrations were significantly elevated in parasympathetically denervated rats compared with control rats (P = 0.008), and VLDL-TG production tended to be increased (P = 0.066). Sympathetically denervated rats also showed a small rise in postprandial triglyceride concentrations (P = 0.045). On the other hand, in rats fed on a six-meals-a-day schedule for several weeks, a parasympathetic denervation resulted in >70% higher plasma triglycerides during the day (P = 0.001), whereas a sympathetic denervation had no effect. Our results show that abolishing the parasympathetic input to the liver results in increased plasma triglyceride levels during postprandial conditions.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.