Size and Dispersion Control of Pt Nanoparticles Grown upon Graphite-Derived Nanosheets (original) (raw)
Abstract
ABSTRACT Graphite oxide nanosheets (GO), graphene nanosheets (GNS), and nanocomposites comprising of GO or GNS coated with polypyrrole (PPy) were prepared and assessed for their ability to influence the surface deposition and growth of Pt nanoparticles. GO was obtained from graphite via oxidation and exfoliation, and GNS was obtained from GO in a subsequent reduction. Both GO and GNS were coated with PPy via in situ polymerization of pyrrole (Py), forming surface-enhanced materials. SEM, EDX, TEM, EELS, Raman, and AFM findings showed that the Pt nanoparticle loading, agglomeration size, aggregate morphology and surface dispersion varied according to the nanosheet surface, nanocomposite type, and Py/nanosheet feed ratio. Surface oxygen functionalization along GO, GNS and their nanocomposites influenced the loading, dispersivity and morphology of nanoparticle agglomerates. PPy/GO nanocomposites yielded an improved nanoagglomerate surface dispersion and loading compared to samples. The PPy-coated substrates offered a greater intrinsic propensity for redox processes, resulting in higher Pt loadings. Additionally, these nanocomposites provided more surface reduction sites compared to bare nanosheets, and the additional sites contributed towards forming smaller, more homogeneously dispersed Pt nanoparticle agglomerates. Bringing together the electrical properties of PPy and physico-mechanical traits of carbon nanosheets, it follows to reason that the nanocomposites produced, particularly GO-based nanocomposites, offer promise as a nanoparticle support material for use in catalysis, electrocatalysis, and hydrogen storage.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (57)
- Armes, S. P. (1987). Optimum reaction conditions for the polymeriza- tion of pyrrole by iron(Iii) chloride in aqueous-solution, Synth. Met., 20, 365-371.
- Berger, S. D., Mckenzie, D. R., and Martin, P. J. (1988). Eels analysis of vacuum arc-deposited diamond-like films, Philos. Mag. Lett., 57, 285-290.
- Braun, A., Huggins, F. E., Shah, N., Chen, Y., Wirick, S., Mun, S. B., Jacobsen, C., and Huffman, G. P. (2005). Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies-A compara- tive study on diesel soot with EELS and NEXAFS, Carbon, 43, 117-124.
- Chen, X. B., Li, C., Gratzel, M., Kostecki, R., and Mao, S. S. (2012). Nanomaterials for renewable energy production and storage, Chem. Soc. Rev., 41, 7909-7937.
- Chu, P. K., and Li, L. H. (2006). Characterization of amorphous and nanocrystalline carbon films, Mater. Chem. Phys., 96, 253-277.
- Coloma, F., Sepulvedaescribano, A., Fierro, J. L. G., and Rodriguezreinoso, F. (1997). Gas phase hydrogenation of croton- aldehyde over Pt=activated carbon catalysts. Influence of the oxygen surface groups on the support, Appl. Catal. A Gen., 150, 165-183.
- Duarte-Moller, A., Espinosa-Magana, F., Martinez-Sanchez, R., Avalos-Borja, M., Hirata, G. A., and Cota-Araiza, L. (1999). Study of different forms of carbon by analytical electron microscopy, J. Electron. Spectrosc., 104, 61-66.
- Eda, G., and Chhowalla, M. (2009). Graphene-based composite thin films for electronics, Nano Lett., 9, 814-818.
- El Achaby, M., and Qaiss, A. (2013). Processing and properties of poly- ethylene reinforced by graphene nanosheets and carbon nanotubes, Mater. Des., 44, 81-89.
- Fang, M., Wang, K. G., Lu, H. B., Yang, Y. L., and Nutt, S. (2009). Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, J. Mater. Chem., 19, 7098-7105.
- Fang, Z., Ito, A., Stuartt, A. C., Luo, H. L., Chen, Z. F., Vinodgopal, K., You, W., Meyer, T. J., and Taylor, D. K. (2013). Soluble reduced graphene oxide sheets grafted with polypyridylruthenium-derivatized polystyrene brushes as light harvesting antenna for photovoltaic applications, ACS Nano, 7, 7992-8002.
- Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., et al. (2006). Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 187401.
- Gonzalez-Berrios, A., Weiner, B. R., and Morell, G. (2007). Effects of adsorbates on field emission reproducibility of sulfur-incorporated nanocomposite carbon films, J. Vac. Sci. Technol. B, 25, 318-323.
- Gubler, L., Beck, N., Gursel, S. A., Hajbolouri, F., Kramer, D., Reiner, A., Steiger, B., et al. (2004). Materials for polymer electro- lyte fuel cells, Chimia, 58, 826-836.
- Hao, X., Quach, L., Korah, J., Spieker, W. A., and Regalbuto, J. R. (2004). The control of platinum impregnation by PZC alteration of oxides and carbon, J. Mol. Catal. A Chem., 219, 97-107.
- He, Y. Q., Zhang, N. N., Gong, Q. J., Qiu, H. X., Wang, W., Liu, Y., and Gao, J. P. (2012). Alginate=graphene oxide fibers with enhanced mechanical strength prepared by wet spinning, Carbohydr. Polym., 88, 1100-1108.
- Jia, Y. F., and Demopoulos, G. P. (2003). Adsorption of silver onto activated carbon from acidic media: Nitrate and sulfate media, Ind. Eng. Chem. Res., 42, 72-79.
- Kim, K. I., and Hong, T. W. (2012). Hydrogen permeation of TiN-graphene membrane by hot sintering process, Solid State Ionics, 225, 699-702.
- Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., and Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable trans- parent electrodes, Nature, 457, 706-710.
- Kou, R., Shao, Y. Y., Wang, D. H., Engelhard, M. H., Kwak, J. H., Wang, J., Viswanathan, V. V., et al. (2009). Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction, Electrochem. Commun., 11, 954-957.
- Lee, H. Y., Kim, J. Y., Park, J. H., Joe, Y. G., and Lee, T. H. (2004). Performance of polypyrrole-impregnated composite electrode for unitized regenerative fuel cell, J. Power Sources, 131, 188-193.
- Li, G. L., Liu, G., Li, M., Wan, D., Neoh, K. G., and Kang, E. T. (2010). Organo-and water-dispersible graphene oxide-polymer nanosheets for organic electronic memory and gold nanocompo- sites, J. Phys. Chem. C, 114, 12742-12748.
- Liu, R., Her, W. H., and Fedkiw, P. S. (1992). Insitu electrode forma- tion on a nafion membrane by chemical platinization, J. Electro- chem. Soc., 139, 15-23.
- Liu, Y., Zhang, Y., Ma, G. H., Wang, Z., Liu, K. Y., and Liu, H. T. (2013). Ethylene glycol reduced graphene oxide=polypyrrole composite for supercapacitor, Electrochim. Acta, 88, 519-525.
- Liu, Y., Zhu, L. H., Zhang, Y. Y., and Tang, H. Q. (2012). Electro- chemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer, Sens. Actuators B Chem., 171, 1151-1158.
- Matsumoto, T., Komatsu, T., Nakano, H., Arai, K., Nagashima, Y., Yoo, E., Yamazaki, T., et al. (2004). Efficient usage of highly dis- persed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells, Catal. Today, 90, 277-281.
- Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004). Electric field effect in atomically thin carbon films, Science, 306, 666-669.
- Okan, B. S., Yurum, A., Gorgulu, N., Gursel, S. A., and Yurum, Y. (2011). Polypyrrole coated thermally exfoliated graphite nanoplate- lets and the effect of oxygen surface groups on the interaction of platinum catalysts with graphene-based nanocomposites, Ind. Eng. Chem. Res., 50, 12562-12571.
- Pantelic, R. S., Suk, J. W., Magnuson, C. W., Meyer, J. C., Wachsmuth, P., Kaiser, U., Ruoff, R. S., and Stahlberg, H. (2011). Graphene: Substrate preparation and introduction, J. Struct. Biol., 174, 234-238.
- Parviz, D., Das, S., Ahmed, H. S. T., Irin, F., Bhattacharia, S., and Green, M. J. (2012). Dispersions of non-covalently functionalized graphene with minimal stabilizer, ACS Nano, 6, 8857-8867.
- Pendashteh, A., Mousavi, M. F., and Rahmanifar, M. S. (2013). Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its appli- cation as supercapacitor, Electrochim. Acta, 88, 347-357.
- Perez, J., Paganin, V. A., and Antolini, E. (2011). Particle size effect for ethanol electro-oxidation on Pt=C catalysts in half-cell and in a single direct ethanol fuel cell, J. Electroanal. Chem., 654, 108-115.
- Pradoburguete, C., Linaressolano, A., Rodriguezreinoso, F., and Delecea, C. S. (1989). The effect of oxygen-surface groups of the support on platinum dispersion in Pt=carbon catalysts, J. Catal., 115, 98-106.
- Qu, B., Xu, Y. T., Lin, S. J., Zheng, Y. F., and Dai, L. Z. (2010). Fabrication of Pt nanoparticles decorated PPy-MWNTs composites and their electrocatalytic activity for methanol oxidation, Synth. Met., 160, 732-742.
- Reddy, A. L. M., Rajalakshmi, N., and Ramaprabhu, S. (2008). Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells, Carbon, 46, 2-11.
- Sahoo, S., Karthikeyan, G., Nayak, G. C., and Das, C. K. (2011). Elec- trochemical characterization of in situ polypyrrole coated graphene nanocomposites, Synth. Met., 161, 1713-1719.
- Saner, B., Dinc, F., and Yurum, Y. (2011). Utilization of multiple graphene nanosheets in fuel cells: 2. The effect of oxidation process on the characteristics of graphene nanosheets, Fuel, 90, 2609-2616.
- Saner, B., Gursel, S. A., and Yurum, Y. (2013). Layer-by-layer poly- pyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells, Fullerene Nanotubes Carbon Nanos- truct., 21, 233-247.
- Saner, B., Okyay, F., and Yurum, Y. (2010). Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation of graphene-based nanosheets from graphite, Fuel, 89, 1903-1910.
- Sepulveda-Escribano, A., Coloma, F., and Rodriguez-Reinoso, F. (1998). Platinum catalysts supported on carbon blacks with differ- ent surface chemical properties, Appl. Catal. A Gen., 173, 247-257.
- Tien, C. P., and Teng, H. S. (2010). Polymer=graphite oxide composites as high-performance materials for electric double layer capacitors, J. Power Sources, 195, 2414-2418.
- Tkachev, S. V., Buslaeva, E. Y., and Gubin, S. P. (2011). Graphene: A novel carbon nanomaterial, Inorg. Mater., 47, 1-10.
- Vernitskaya, T. V., and Efimov, O. N. (1997). Polypyrrole: A conduct- ing polymer (synthesis, properties, and applications), Usp. Khim., 66, 489-505.
- Wang, B., Chang, Y. H., and Zhi, L. J. (2011). High yield production of graphene and its improved property in detecting heavy metal ions, New Carbon Mater., 26, 31-35.
- Wang, H. L., Hao, Q. L., Yang, X. J., Lu, L. D., and Wang, X. (2009a). Graphene oxide doped polyaniline for supercapacitors, Electro- chem. Commun., 11, 1158-1161.
- Wang, L. F., and Yang, R. T. (2010). Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover, Catal. Rev., 52, 411-461.
- Wang, Y., Shi, Z. Q., Huang, Y., Ma, Y. F., Wang, C. Y., Chen, M. M., and Chen, Y. S. (2009b). Supercapacitor devices based on graphene materials, J. Phys. Chem. C, 113, 13103-13107.
- Wang, Z. S., Zhang, R., Zhang, Z. D., Huang, Z. H., Liu, C. S., Fu, D. J., and Liu, J. R. (2013). Raman spectroscopy of few-layer graphene prepared by C-2-C-6 cluster ion implantation, Nucl. Instrum. Meth. B, 307, 40-42.
- Watanabe, M., Sei, H., and Stonehart, P. (1989). The influence of platinum crystallite size on the electroreduction of oxygen, J. Elec- troanal. Chem., 261, 375-387.
- Xu, J. S., Dang, D. K., Tran, V. T., Liu, X. Y., Chung, J. S., Hur, S. H., Choi, W. M., Kim, E. J., and Kohl, P. A. (2014). Liquid-phase exfoliation of graphene in organic solvents with addition of naph- thalene, J. Colloid Interface Sci., 418, 37-42.
- Yadav, S. K., and Cho, J. W. (2013). Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites, Appl. Surf. Sci., 266, 360-367.
- Yang, J., Sudik, A., Wolverton, C., and Siegel, D. J. (2010). High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery, Chem. Soc. Rev., 39, 656-675.
- Yoo, E., Okada, T., Kizuka, T., and Nakamura, J. (2008). Effect of carbon substrate materials as a Pt-Ru catalyst support on the per- formance of direct methanol fuel cells, J. Power Sources, 180, 221-226.
- Zhang, K., Zhang, L. L., Zhao, X. S., and Wu, J. S. (2010). Graphene= polyaniline nanoriber composites as supercapacitor electrodes, Chem. Mater., 22, 1392-1401.
- Zhang, Y., Wang, S. R., Li, L., Zhang, K., Qiu, J. J., Davis, M., and Hope-Weeks, L. J. (2012). Tuning electrical conductivity and sur- face area of chemically-exfoliated graphene through nanocrystal functionalization, Mater. Chem. Phys., 135, 1057-1063.
- Zhao, H. B., Li, L., Yang, J., and Zhang, Y. M. (2008). Nanostructured polypyrrole=carbon composite as Pt catalyst support for fuel cell applications, J. Power Sources, 184, 375-380.
- Zhao, H. B., Yang, J., Li, L., Li, H., Wang, J. L., and Zhang, Y. M. (2009). Effect of over-oxidation treatment of Pt-Co=polypyrrole-carbon nanotube catalysts on methanol oxidation, Int. J. Hydrogen Energy, 34, 3908-3914.