Characterization of Finite Groups With Some S-quasinormal Subgroups (original) (raw)

Abstract

A subgroup of a finite group G is said to be S-quasinormal in G if it permutes with every Sylow subgroup of G. In this paper we give a characterization of a finite group G under the assumption that every subgroup of the generalized Fitting subgroup of prime order is S-quasinormal in G.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (10)

  1. Asaad M, Cso ¨rg} o P (1999) The influence of minimal subgroups on the structure of finite groups. Archiv Math (Basel) 72: 401-404
  2. Gorenstein D (1968) Finite Groups. New York: Harper & Row
  3. Huppert B (1979) Endliche Gruppen I. Berlin Heidelberg New York: Springer
  4. Huppert B, Blackburn N (1982) Finite Groups III. Berlin Heidelberg New York: Springer
  5. Kegel OH (1962) Sylow Gruppen und Subnormalteiler Gruppen. Math Z 78: 205-221
  6. Li Y, Wang Y (2003) The influence of minimal subgroups on the structure of a finite group. Proc Amer Math Soc 131: 337-341
  7. Laue R (1978) Dualization of saturation for locally defined formation. J Algebra 52: 347-353
  8. Shaalan A (1990) The influence of -quasinormality of some subgroups. Acta Math Hungar 56: 287-293
  9. Authors' addresses: M. Asaad, Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt;
  10. P. Cso ¨rg} o, Department of Algebra and Number Theory, Eo ¨tvo ¨s University, Pa ´zma ´ny P e eter s e eta ´ny 1=c, H-1117 Budapest, Hungary, e-mail: ska@cs.elte.hu