SGM Actinobacteria poster (original) (raw)

Actinobacteria – an ancient phylum active in volcanic rock weathering

Geomicrobiology Journal, 2013

A molecular biological analysis of Icelandic volcanic rocks of different compositions and glassiness revealed the presence of Actinobacteria as an abundant phylum. In outcrops of basaltic glass they were the dominant bacterial phylum. A diversity of Actinobacteria were cultured from the rocks on rock-agar plates showing that they are capable of growing on rock-derived nutrient sources and that many of the taxa identified by molecular methods are viable, potentially active members of the community. Laboratory batch-culture experiments using a Streptomyces isolate showed that it was capable of enhancing the release of major elements from volcanic rocks, including weathered basaltic glass, crystalline basalt and komatiite, when provided with a carbon source. Actinobacteria of a variety of other sub-orders were also capable of enhancing volcanic rock weathering, measured as Si release. However, most strains did not significantly increase the weathering of the silica-rich rock, obsidian. These data show that Actinobacteria can contribute to volcanic rock weathering and, therefore, the carbonate-silicate cycle. Given their ancient lineage, it is likely they have played a role in rock weathering for over two billion years.

Bacteria in weathered basaltic glass, Iceland

Geomicrobiology …, 2009

Bacteria play an important role in rock weathering and yet their diversity and potential activity in the terrestrial rock weathering environment is poorly understood. Culture and culture-independent methods (16S rDNA) were used to investigate the populations of bacteria inhabiting a basaltic glass/palagonite subglacial (hyaloclastite) deposit subject to weathering in Iceland. The rock hosts a diverse microbial community. The 16S rDNA clones were dominated by Actinobacteria, Proteobacteria, Bacteroidetes and Acidobacteria. Representatives of Gemmatimonadetes and Verrucomicrobia were present. Isolation of organisms on basalt/palagonite yielded only two isolates, an actinobacterium and a Bacteroidetes, showing that the active species, at least in the time scale of laboratory cultivation, are a small proportion of the total diversity. Firmicutes and Actinobacteria were isolated when basalt/palagonite was supplemented with an organic source. Many of the isolates demonstrated tolerance to transition metals (Cr, Cu, Zn, Ni, Co) naturally present in the rock. The growth of the isolates was inhibited at typical pH values for Icelandic rain, which suggests that the increase in pH caused by the consumption of protons in rock weathering, for example by palagonite formation, may play a role in defining which organisms are active. Colonization experiments show that the filamentous growth habit of the actinobacterium isolated on basalt/palagonite allows it to actively invade and colonise the basaltic glass. The filamentous growth of some actinobacteria may be an important contributor to their role in systemic interstitial rock weathering in the natural environment.

Diversity and adaptation properties of actinobacteria associated with Tunisian stone ruins

Frontiers in Microbiology

Stone surface is a unique biological niche that may host a rich microbial diversity. The exploration of the biodiversity of the stone microbiome represents a major challenge and an opportunity to characterize new strains equipped with valuable biological activity. Here, we explored the diversity and adaptation strategies of total bacterial communities associated with Roman stone ruins in Tunisia by considering the effects of geo-climatic regions and stone geochemistry. Environmental 16S rRNA gene amplicon was performed on DNA extracted from stones samples collected in three different sampling sites in Tunisia, along an almost 400km aridity transect, encompassing Mediterranean, semiarid and arid climates. The library was sequenced on an Illumina MiSeq sequencing platform. The cultivable Actinobacteria were isolated from stones samples using the dilution plate technique. A total of 71 strains were isolated and identified based on 16S rRNA gene sequences. Cultivable actinobacteria were...