Translocase and major signal peptidase malfunctions affect aerial mycelium formation in Streptomyces lividans (original) (raw)
Related papers
Journal of Bacteriology, 2002
Most bacteria contain one type I signal peptidase (SPase) for cleavage of signal peptides from secreted proteins. The developmental complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of proteins and has four different type I signal peptidases genes (sipW, sipX, sipY, and sipZ) unusually clustered in its chromosome. Functional analysis of the four SPases was carried out by phenotypical and molecular characterization of the different individual sip mutants. None of the sip genes seemed to be essential for bacterial growth. Analysis of total extracellular proteins indicated that SipY is likely to be the major S. lividans SPase, since the sipY mutant strain is highly deficient in overall protein secretion and extracellular protease production, showing a delayed sporulation phenotype when cultured in solid medium.
Journal of Chemical Technology & Biotechnology, 2016
BACKGROUNDExtracellular protein production by Gram‐positive bacteria, such as Streptomyces, may be complementary to current established protein production processes. The performance of a Streptomyces lividans mutant strain, deficient in the major signal peptidase (SipY) is investigated for the production of proteins secreted via the secondary Tat pathway.RESULTSThe SipY deficient strain has shown advantages over the wild type strain, in terms of extracellular productivity, specific activity and rheological behaviour. Two operational modes, batch and fed‐batch, have been studied using mannitol as carbon source. The results showed that two successive mannitol additions in fed‐batch mode led to improved secretory protein production using Streptomyces agarase as a model protein. This production process was also explored for the Tat secretory protein S. lividans laccase. The predicted sequence for the pre‐laccase coding sequence has been cloned into the mutant strain under the control of...
1995
A strain of Streptomyces lividans 66 deleted for a major tripeptidyl aminopeptidase (Tap) was used as a host to screen an S. lividans genomic library for clones overexpressing activity against the chromogenic substrate Ala-Pro-Ala--naphthylamide. In addition to reisolation of the tap gene, clones representing another locus, slpD, were uncovered. slpD was analyzed by deletion subcloning to localize its functional sequence. Nucleotide sequence determination revealed an open reading frame encoding a 55-kDa protein exhibiting significant amino acid sequence homology to Tap, particularly around the putative active-site serine residue. No secreted protein was observed for strains harboring the slpD clone, but inspection of the predicted protein sequence revealed a putative lipoprotein signal peptide (signal peptidase II type), suggesting a mycelial location for the SlpD proteinase. In an attempt to isolate an endoprotease known to be active against some heterologous proteins, a second clone was isolated by using a longer substrate (t-butyloxycarbonyl [Boc]-APARSPA--naphthylamide) containing a chemical blocking group at the amino terminus to prevent aminopeptidase cleavage. This locus, slpE, appeared to also encode a 55-kDa mycelium-associated (lipoprotein) proteinase, whose predicted protein sequences showed significant amino acid homology to Tap and SlpD, particularly around the putative active-site serine residues. Chromosomal integration and deletion analysis in both the wild-type and Tap-deficient backgrounds appeared to indicate that SlpD was essential for viability and SlpE was required for growth on minimal media.
PROTEOMICS, 2006
The developmentally complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of protein and possesses four different type I signal peptidase genes (sipW, sipX, sipY and sipZ) that are unusually clustered in its chromosome. 2-DE and subsequent MS of extracellular proteins showed that proteins with typical export signals for type I and type II signal peptidases are the main components of the S. lividans secretome. Secretion of extracellular proteins is severely reduced in a strain deficient in the major type I signal peptidase (SipY). This deficiency was efficiently compensated by complementation with any of the other three signal peptidases as deduced from a comparison of the corresponding 2-D PAGE patterns with that of the wild-type strain.
PLOS ONE, 2015
Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase) and a Tatdependent model protein (agarase) in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients' depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host.
Proceedings of the National Academy of Sciences, 2006
The twin-arginine translocation (Tat) pathway is a protein transport system for the export of folded proteins. Substrate proteins are targeted to the Tat translocase by N-terminal signal peptides harboring a distinctive R-R-x-⌽-⌽ ''twin-arginine'' amino acid motif. Using a combination of proteomic techniques, the protein contents from the cell wall of the model Gram-positive bacterium Streptomyces coelicolor were identified and compared with that of mutant strains defective in Tat transport. The proteomic experiments pointed to 43 potentially Tat-dependent extracellular proteins. Of these, 25 were verified as bearing bona fide Tat-targeting signal peptides after independent screening with a facile, rapid, and sensitive reporter assay. The identified Tat substrates, among others, include polymerdegrading enzymes, phosphatases, and binding proteins as well as enzymes involved in secondary metabolism. Moreover, in addition to predicted extracellular substrates, putative lipoproteins were shown to be Tat-dependent. This work provides strong experimental evidence that the Tat system is used as a major general export pathway in Streptomyces.
1997
Morphological differentiation in microorganisms is usually accompanied by a decrease in intracellular GTP pool size, as has been demonstrated in bacillaceae, streptomycetaceae, and yeasts. The obg gene, which codes for a GTP-binding protein belonging to the GTPase superfamily of proteins, was cloned from Streptomyces griseus IFO13189. The gene is located just downstream of the genes for ribosomal proteins L21 and L27, encoded a protein of 478 amino acids (51 kDa), and possessed three consensus motifs which confer GTPbinding ability; Obg protein expressed in Escherichia coli bound GTP, as demonstrated using a UV crosslinking method. Introduction of multiple copies of obg into wild-type S. griseus suppressed aerial mycelium development in cells on solid media. However, no effect on streptomycin production was detected, indicating that Obg is involved in the regulation of the onset of morphological but not physiological differentiation. Multiple copies of obg also suppressed submerged spore formation in liquid culture. Southern hybridization studies indicated that genes homologous to obg exist widely in streptomycetes, and an obg homolog was successfully cloned from S. coelicolor A3(2). We propose that by monitoring the intracellular GTP pool size, the Obg protein is involved in sensing changes in the nutritional environment leading ultimately to morphological differentiation.
Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein
Microbial Cell Factories
Background: The Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production because of its high capability to secrete proteins-which favors correct folding and facilitates downstream processing-as well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production on the cell. In the current study, transcriptomics and 13 C-based fluxomics were exploited to uncover gene expression and metabolic flux changes associated with heterologous protein production. The Rhodothermus marinus thermostable cellulase A (CelA)-previously shown to be successfully overexpressed in S. lividans-was taken as an example protein. Results: RNA-seq and 13 C-based metabolic flux analysis were performed on a CelA-producing and an empty-plasmid strain under the same conditions. Differential gene expression, followed by cluster analysis based on co-expression and co-localization, identified transcriptomic responses related to secretion-induced stress and DNA damage. Furthermore, the OsdR regulon (previously associated with hypoxia, oxidative stress, intercellular signaling, and morphological development) was consistently upregulated in the CelA-producing strain and exhibited co-expression with isoenzymes from the pentose phosphate pathway linked to secondary metabolism. Increased expression of these isoenzymes matches to increased fluxes in the pentose phosphate pathway. Additionally, flux maps of the central carbon metabolism show increased flux through the tricarboxylic acid cycle in the CelA-producing strain. Redirection of fluxes in the CelA-producing strain leads to higher production of NADPH, which can only partly be attributed to increased secretion. Conclusions: Transcriptomic and fluxomic changes uncover potential new leads for targeted strain improvement strategies which may ease the secretion stress and metabolic burden associated with heterologous protein synthesis and secretion, and may help create a more consistently performing S. lividans strain. Yet, links to secondary metabolism and redox balancing should be further investigated to fully understand the S. lividans metabolome under heterologous protein production.
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2014
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / b b a m c r