Maternal effects, flight versus fecundity trade-offs, and offspring immune defence in the Speckled Wood butterfly, Pararge aegeria (original) (raw)
Related papers
Evolution, 2012
Parental effects can greatly affect offspring performance and are thus expected to impact population dynamics and evolutionary trajectories. Most studies have focused on maternal effects, whereas fathers are also likely to influence offspring phenotype, for instance when males transfer nutrients to females during mating. Moreover, although the separate effects of maternal age and the environment have been documented as a source of parental effects in many species, their combined effects have not been investigated. In the present study, we analyzed the combined effects of maternal and paternal age at reproduction and a mobility treatment in stressful conditions on offspring performance in the butterfly Pieris brassicae. Both paternal and maternal effects affected progeny traits but always via interactions between age and mobility treatment. Moreover, parental effects shifted from male effects expressed at the larval stage to maternal effects at the adult stage. Indeed, egg survival until adult emergence significantly decreased with father age at mating only for fathers having experienced the mobility treatment, whereas offspring adult life span decreased with increasing mother age at laying only for females that did not experience the mobility treatment. Overall, our results demonstrate that both parents' phenotypes influence offspring performance through nongenetic effects, their relative contribution varying over the course of progeny's life.
Organisms in the wild are constantly faced with a wide range of environmental variability, such as fluctuation in food availability. Poor nutritional conditions influence life-histories via individual resource allocation patterns, and trade-offs between competing traits. In this study, we assessed the influence of food restriction during development on the energetically expensive traits flight metabolic rate (proxy of dispersal ability), encapsulation rate (proxy of immune defence), and lifespan using the Glanville fritillary butterfly, Melitaea cinxia, as a model organism. Additionally, we examined the direct costs of flight on individual immune function, and whether those costs increase under restricted environmental conditions. We found that nutritional restriction during development enhanced adult encapsulations rate, but reduced both resting and flight metabolic rates. However, at the individual level metabolic rates were not associated with encapsulation rate. Interestingly, individuals that were forced to fly prior to the immune assays had higher encapsulation rates than individuals that had not flown, suggesting that flying itself enhances immune response. Finally, in the control group encapsulation rate correlated positively with lifespan, whereas in the nutritional restriction group there was no relationship between these traits, suggesting that the association between encapsulation rate on adult lifespan was condition-dependent. Thus stressful events during both larval development (food limitation) and adulthood (forced flight) induce increased immune response in the adult butterflies, which may allow individuals to cope with stressful events later on in life.
Journal of insect physiology
Infections represent a constant threat for organisms and can lead to substantial fitness losses. Understanding how individuals, especially from natural populations, respond towards infections is thus of great importance. Little is known about immunity in the Glanville fritillary butterfly (Melitaea cinxia). As the larvae live gregariously in family groups, vertical and horizontal transmission of infections could have tremendous effects on individuals and consequently impact population dynamics in nature. We used the Alphabaculovirus type strain Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and demonstrated that positive concentration-dependent baculovirus exposure leads to prolonged developmental time and decreased survival during larval and pupal development, with no sex specific differences. Viral exposure did not influence relative thorax mass or wing morphometric traits often related to flight ability, yet melanisation of the wings increased with viral exposure, ...
Oecologia, 2013
Life history characteristics and resulting fitness consequences manifest not only in an individual experiencing environmental conditions but also in its offspring via trans-generational effects. We conducted a set of experiments to assess the direct and trans-generational effects of food deprivation in the Glanville fritillary butterfly Melitaea cinxia. Food availability was manipulated during the final stages of larval development and performance was assessed during two generations. Direct responses to food deprivation were relatively minor. Food-deprived individuals compensated, via increased development time, to reach a similar mass as adults from the control group. Delayed costs of compensatory growth were observed, as fooddeprived individuals had either reduced fecundity or lifespan depending on the type of feeding treatment they had experienced (intermittent vs. continuous). Female food deprivation did not directly affect her offspring's developmental trajectory, but the way the offspring coped with food deprivation. Offspring of mothers from control or intermittent starvation treatments reached the size of those in the control group via increased development time when being starved. In contrast, offspring of mothers that had experienced 2 days of continuous food deprivation grew even larger than control animals, when deprived of food themselves. Offspring of food-deprived Glanville fritillary initially showed poor immune response to parasitism, but not later on in development.
Biology letters, 2015
There is an increasing appreciation of the importance of transgenerational effects on offspring fitness, including in relation to immune function and disease resistance. Here, we assess the impact of parental rearing density on offspring resistance to viral challenge in an insect species expressing density-dependent prophylaxis (DDP); i.e. the adaptive increase in resistance or tolerance to pathogen infection in response to crowding. We quantified survival rates in larvae of the cotton leafworm (Spodoptera littoralis) from either gregarious- or solitary-reared parents following challenge with the baculovirus S. littoralis nucleopolyhedrovirus. Larvae from both the parental and offspring generations exhibited DDP, with gregarious-reared larvae having higher survival rates post-challenge than solitary-reared larvae. Within each of these categories, however, survival following infection was lower in those larvae from gregarious-reared parents than those from solitary-reared, consistent...
Frontiers in Zoology, 2008
Background: In the Lepidoptera it was historically believed that adult butterflies rely primarily on larval-derived nutrients for reproduction and somatic maintenance. However, recent studies highlight the complex interactions between storage reserves and adult income, and that the latter may contribute significantly to reproduction. Effects of adult diet were commonly assessed by determining the number and/or size of the eggs produced, whilst its consequences for egg composition and offspring viability were largely neglected (as is generally true for insects). We here specifically focus on these latter issues by using the fruit-feeding tropical butterfly Bicyclus anynana, which is highly dependent on adult-derived carbohydrates for reproduction. Results: Adult diet of female B. anynana had pronounced effects on fecundity, egg composition and egg hatching success, with butterflies feeding on the complex nutrition of banana fruit performing best. Adding vitamins and minerals to a sucrose-based diet increased fecundity, but not offspring viability. All other groups (plain sucrose solution, sucrose solution enriched with lipids or yeast) had a substantially lower fecundity and egg hatching success compared to the banana group. Differences were particularly pronounced later in life, presumably indicating the depletion of essential nutrients in sucrose-fed females. Effects of adult diet on egg composition were not straightforward, indicating complex interactions among specific compounds. There was some evidence that total egg energy and water content were related to hatching success, while egg protein, lipid, glycogen and free carbohydrate content did not seem to limit successful development. Conclusion: The patterns shown here exemplify the complexity of reproductive resource allocation in B. anynana, and the need to consider egg composition and offspring viability when trying to estimate the effects of adult nutrition on fitness in this butterfly and other insects.
Hormones and Behavior, 2013
Although models of co-evolution between brood parasites and their hosts primarily focus upon the cost to hosts in the current reproductive bout, the impact of brood parasitism may carry over to future reproductive attempts by altering resource allocation. Glucocorticoid stress hormones help mediate resource allocation to reproduction, yet they have rarely been examined in brood parasitic systems. Here we determined if shifts in parental care and corticosterone had carry-over effects on future reproductive effort in the rufous-and-white wren (Thryophilus rufalbus), a host of the Central American striped cuckoo (Tapera naevia). We found that parasitized parents had significantly higher stress-induced, but not baseline, corticosterone than natural parents during the fledgling stage, which was associated with changes in parental care. The high investment in current reproduction while parasitized may be due to the value of fledged chicks in tropical systems. This maladaptive response by parasitized parents was associated with delayed re-nesting and a reduced likelihood of nesting in the subsequent breeding season. Although a reduction in future reproductive effort can result from a combination of factors, this work suggests that fitness costs of brood parasitism are mediated by changes in corticosterone and parental care behavior that carry over into subsequent breeding seasons.
Functional Ecology, 2007
Evolutionary theory predicts that resource allocation decisions taken during development are adjusted to an organism's life-history. These decisions may have irreversible effects on body design and strong fitness consequences. Holometabolous insects that have a long expected life span typically postpone reproduction, and so are expected to allocate resources for somatic maintenance prior to investing in reproduction. In contrast, insects that have a short expected life span are expected to allocate relatively less to soma and more to reproduction. In support of this theory, an earlier investigation of resources allocated to soma vs. reproductive reserves in the comma butterfly, Polygonia c-album , revealed that short-lived females indeed allocate more resources to reproductive reserves as compared to longer lived females that hibernate before reproduction suggesting that short-lived females should have higher fecundity.