Evaluation of rheological constitutive equations for branched polymers in step shear strain flows (original) (raw)
AI-generated Abstract
The pom-pom rheological constitutive equation for branched polymers proposed by McLeish and Larson is evaluated in step shear strain flows. Semianalytic expressions for the shear-stress relaxation modulus are derived for both the integral and approximate differential versions of the pom-pom model. Predictions from the thermodynamically motivated differential pompon model of Ö ttinger are also examined. Single-mode integral and differential pom-pom models are found to give qualitatively different predictions, the former displays time-strain factorability after the backbone stretch is relaxed, while the latter does not. We also find that the differential pompon model gives quantitatively similar predictions to the integral pom-pom model in step strain flows. Predictions from multimode integral and differential pom-pom models are compared with experimental data on a widely characterized, low-density polyethylene known as 1810H. The experiments strongly support time-strain factorability, while the multimode pom-pom model predictions show deviations from this behavior over the entire range of time that is experimentally accessible.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.