Quantitative analysis of the interplay between hsc70 and its co-chaperone HspBP1 (original) (raw)
Related papers
Comprehensive identification of HSP70/HSC70 Chaperone Clients in Human Cells
2019
The HSP70 family of chaperones are the front-line of protection from stress-induced misfolding and aggregation of polypeptides in most organisms and are responsible for promoting the stability, folding, and degradation of clients to maintain cellular protein homeostasis. Here we demonstrate quantitative identification of HSP70 and HSC70 clients using an ubiquitin-mediated proximity tagging strategy and show that, despite their high degree of similarity, these enzymes have largely non-overlapping specificities. Both proteins show a preference for association with newly synthesized polypeptides but each responds differently to changes in the stoichiometry of proteins in obligate multi-subunit complexes. In addition, expression of an ALS-associated SOD1 mutant protein induces changes in HSP70 and HSC70 client association and aggregation toward polypeptides with predicted disorder, indicating that there are global effects from a single misfolded protein that extend to many clients withi...
Proteotoxicity is not the reason for the dependence of cancer cells on the major chaperone Hsp70
Cell cycle (Georgetown, Tex.), 2014
Several years ago a hypothesis was proposed that the survival of cancer cells depend on elevated expression of molecular chaperones because these cells are prone to proteotoxic stress. A critical prediction of this hypothesis is that depletion of chaperones in cancer cells should lead to proteotoxicity. Here, using the major chaperone Hsp70 as example, we demonstrate that its depletion does not trigger proteotoxic stress, thus refuting the model. Accordingly, other functions of chaperones, e.g., their role in cell signaling, might define the requirements for chaperones in cancer cells, which is critical for rational targeting Hsp70 in cancer treatment.
The remarkable multivalency of the Hsp70 chaperones
Cell Stress and Chaperones, 2017
Hsp70 proteins are key to maintaining intracellular protein homeostasis. To carry out this task, they employ a large number of cochaperones and adapter proteins. Here, we review what is known about the interaction between the chaperones and partners, with a strong slant toward structural biology. Hsp70s in general, and Hsc70 (HSPA8) in particular, display an amazing array of interfaces with their protein cofactors. We also review the known interactions between Hsp70s with lipids and with active compounds that may become leads toward Hsp70 modulation for treatment of a variety of diseases.
A Novel Function of Molecular Chaperone HSP70
Journal of Biological Chemistry, 2016
The oncogenic transcription factor FOXM1 is overexpressed in the majority of human cancers, and it is a potential target for anticancer therapy. We identified proteasome inhibitors as the first type of drugs that target FOXM1 in cancer cells. Here we found that HSP90 inhibitor PF-4942847 and heat shock also suppress FOXM1. The common effector, which was induced after treatment with proteasome and HSP90 inhibitors or heat shock, was the molecular chaperone HSP70. We show that HSP70 binds to FOXM1 following proteotoxic stress and that HSP70 inhibits FOXM1 DNA-binding ability. Inhibition of FOXM1 transcriptional autoregulation by HSP70 leads to the suppression of FOXM1 protein expression. In addition, HSP70 suppression elevates FOXM1 expression, and simultaneous inhibition of FOXM1 and HSP70 increases the sensitivity of human cancer cells to anticancer drug-induced apoptosis. Overall, we determined the unique and novel mechanism of FOXM1 suppression by proteasome inhibitors.
Journal of Biological Chemistry, 2002
At the primary structure level, the 90-kDa heat shock protein (HSP90) is composed of three regions: the Nterminal (Met 1-Arg 400), middle (Glu 401-Lys 615), and Cterminal (Asp 621-Asp 732) regions. In the present study, we investigated potential subregion structures of these three regions and their roles. Limited proteolysis revealed that the N-terminal region could be split into two fragments carrying residues Met 1 to Lys 281 (or Lys 283) and Glu 282 (or Tyr 284) to Arg 400. The former is known to carry the ATP-binding domain. The fragments carrying the N-terminal two-thirds (Glu 401-Lys 546) and C-terminal one-third of the middle region were sufficient for the interactions with the N-and C-terminal regions, respectively. Yeast HSC82 that carried point mutations in the middle region causing deficient binding to the N-terminal region could not support the growth of HSP82-depleted cells at an elevated temperature. Taken together, our data show that the N-terminal and middle regions of the HSP90 family protein are structurally divided into two respective subregions. Moreover, the interaction between the N-terminal and middle regions is essential for the in vivo function of HSP90 in yeast.
Journal of molecular biology, 2015
Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways, Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70∆EEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration ...
Pharmacological targeting of the Hsp70 chaperone
Current topics in medicinal …, 2009
The molecular chaperone, heat shock protein 70 (Hsp70), acts at multiple steps in a protein’s life cycle, including during the processes of folding, trafficking, remodeling and degradation. To accomplish these various tasks, the activity of Hsp70 is shaped by a host of co-chaperones, which bind to the core chaperone and influence its functions. Genetic studies have strongly linked Hsp70 and its co-chaperones to numerous diseases, including cancer, neurodegeneration and microbial pathogenesis, yet the potential of this chaperone as a therapeutic target remains largely underexplored. Here, we review the current state of Hsp70 as a drug target, with a special emphasis on the important challenges and opportunities imposed by its co-chaperones, protein-protein interactions and allostery.
Hsp70 chaperones: Cellular functions and molecular mechanism
Cellular and Molecular Life Sciences, 2005
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and
Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange
Nature Structural Biology, 2001
The Hsp70 chaperone activity in protein folding is regulated by ATP-controlled cycles of substrate binding and release. Nucleotide exchange plays a key role in these cycles by triggering substrate release. Structural searches of Hsp70 homologs revealed three structural elements within the ATPase domain: two salt bridges and an exposed loop. Mutational analysis showed that these elements control the dissociation of nucleotides, the interaction with exchange factors and chaperone activity. Sequence variations in the three elements classify the Hsp70 family members into three subfamilies, DnaK proteins, HscA proteins and Hsc70 proteins. These subfamilies show strong differences in nucleotide dissociation and interaction with the exchange factors GrpE and Bag-1.