Spontaneous and Receptor-Controlled Soluble Guanylyl Cyclase Activity in Anterior Pituitary Cells (original) (raw)
Molecular Endocrinology, 2001
Abstract
Nitric oxide (NO)-dependent soluble guanylyl cyclase (sGC) is operative in mammalian cells, but its presence and the role in cGMP production in pituitary cells have been incompletely characterized. Here we show that sGC is expressed in pituitary tissue and dispersed cells, enriched lactotrophs and somatotrophs, and GH(3) immortalized cells, and that this enzyme is exclusively responsible for cGMP production in unstimulated cells. Basal sGC activity was partially dependent on voltage-gated calcium influx, and both calcium-sensitive NO synthases (NOS), neuronal and endothelial, were expressed in pituitary tissue and mixed cells, enriched lactotrophs and somatotrophs, and GH(3) cells. Calcium-independent inducible NOS was transiently expressed in cultured lactotrophs and somatotrophs after the dispersion of cells, but not in GH(3) cells and pituitary tissue. This enzyme participated in the control of basal sGC activity in cultured pituitary cells. The overexpression of inducible NOS by lipopolysaccharide + interferon-gamma further increased NO and cGMP levels, and the majority of de novo produced cGMP was rapidly released. Addition of an NO donor to perifused pituitary cells also led to a rapid cGMP release. Calcium-mobilizing agonists TRH and GnRH slightly increased basal cGMP production, but only when added in high concentrations. In contrast, adenylyl cyclase agonists GHRH and CRF induced a robust increase in cGMP production, with EC(50)s in the physiological concentration range. As in cells overexpressing inducible NOS, the stimulatory action of GHRH and CRF was preserved in cells bathed in calcium-deficient medium, but was not associated with a measurable increase in NO production. These results indicate that sGC is present in secretory anterior pituitary cells and is regulated in an NO-dependent manner through constitutively expressed neuronal and endothelial NOS and transiently expressed inducible NOS, as well as independently of NO by adenylyl cyclase coupled-receptors.
Stanko Stojilkovic hasn't uploaded this paper.
Let Stanko know you want this paper to be uploaded.
Ask for this paper to be uploaded.