Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms (original) (raw)
Related papers
Novel Inhibitors of SARS-CoV Entry acting by Three Distinct Mechanisms
Journal of Virology, 2013
Severe acute respiratory syndrome (SARS) is an infectious and highly contagious disease that is caused by SARS coronavirus (SARS-CoV) and for which there are currently no approved treatments. We report the discovery and characterization of smallmolecule inhibitors of SARS-CoV replication that block viral entry by three different mechanisms. The compounds were discovered by screening a chemical library of compounds for blocking of entry of HIV-1 pseudotyped with SARS-CoV surface glyco-
Molecules
The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on host cell surface glycans to facilitate interaction with the angiotensin-converting enzyme 2 (ACE-2) receptor. This interaction between ACE2 and the spike protein is a gateway for the virus to enter host cells and may be targeted by antiviral drugs to inhibit viral infection. Therefore, targeting the interaction between these two proteins is an interesting strategy to prevent SARS-CoV-2 infection. A library of glycan mimetics and derivatives was selected for a virtual screening performed against both ACE2 and spike proteins. Subsequently, in vitro assays were performed on eleven of the most promising in silico compounds to evaluate: (i) their efficacy in inhibiting cell infection by SARS-CoV-2 (using the Vero CCL-81 cell line as a model), (ii) their impact on ACE2 expression (in the Vero CCL-81 and MDA-MB-231 cell lines), and (iii) their cytotoxicity in a human lung cell line (A549). We i...
Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors—The Current Status
Frontiers in Immunology, 2020
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease-19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals Beeraka et al. Strategies for Targeting SARS-CoV-2: NSMIs and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Discovery and in-vitro evaluation of potent SARS-CoV-2 entry inhibitors
2021
SARS-CoV-2 infection initiates with the attachment of spike protein to the ACE2 receptor. While vaccines have been developed, no SARS-CoV-2 specific small molecule inhibitors have been approved. Herein, utilizing the crystal structure of the ACE2/Spike receptor binding domain (S-RBD) complex in computer-aided drug design (CADD) approach, we docked ∼8 million compounds within the pockets residing at S-RBD/ACE2 interface. Five best hits depending on the docking score, were selected and tested for their in vitro efficacy to block SARS-CoV-2 replication. Of these, two compounds (MU-UNMC-1 and MU-UNMC-2) blocked SARS-CoV-2 replication at sub-micromolar IC50 in human bronchial epithelial cells (UNCN1T) and Vero cells. Furthermore, MU-UNMC-2 was highly potent in blocking the virus entry by using pseudoviral particles expressing SARS-CoV-2 spike. Finally, we found that MU-UNMC-2 is highly synergistic with remdesivir (RDV), suggesting that minimal amounts are needed when used in combination ...
Discovery and evaluation of entry inhibitors for SARS-CoV-2 and its emerging variants
Journal of Virology
The outbreak of SARS-CoV-2 is responsible for the COVID-19 pandemic. Despite unprecedented research and developmental efforts, SARS-CoV-2-specific antivirals are still unavailable for the treatment of COVID-19. In most instances, SARS-CoV-2 infection initiates with the binding of spike glycoprotein to the host cell ACE2 receptor. Utilizing the crystal structure of the ACE2/Spike receptor-binding domain (S-RBD) complex (PDB file 6M0J) in a computer-aided drug design (CADD) approach, we identified and validated 5 potential inhibitors of S-RBD and ACE-2 interaction. Two of the five compounds, MU-UNMC-1 and MU-UNMC-2, blocked the entry of pseudovirus particles expressing SARS-CoV-2 Spike glycoprotein. In live SARS-CoV-2 infection assays, both the compounds showed antiviral activity with IC 50 values in the micromolar range (MU-UNMC-1: IC 50 = 0.67 μM and MU-UNMC-2: IC 50 = 1.72 μM) in human bronchial epithelial cells. Furthermore, MU-UNMC-1 and MU-UNMC-2 effectively blocked the replicat...
Identification of Multi-Target Directed Inhibitors of SARS-CoV-2: Drug Repurposing
Research Square (Research Square), 2021
Background: COVID-19 remains a major global challenge while several drugs identi ed to ameliorate the syndromes are associated with incessant resistance and lack of prospective potentials to permanently curb the infection. This study is aimed at evaluating the potentials of the existing drug molecules to overcome the viral resistance through multi-target inhibition mechanisms. Methods: Molecular docking and molecular dynamics simulations have been extensively applied to virtually screen 2826 drugs from Selleckem.com library against some key bio-receptors implicated in the SARS-CoV-2 such as the viral nucleocapsid phosphoprotein, the viral spike glycoprotein and the human host ACE2. Results: Five drugs namely D-(+)-Ra nose pentahydrate (1), (-)-Epicatechin gallate (5), 2797 (7), Rutin DAB10 (8) and Hyperoside (9) display higher inhibitory potentials against N-terminal NTD of SARS-CoV-2 (PDB 6M3M) with XP docking scores of-16.20,-11.98,-11.83,-11.81 and-11.41 than remdesivir and ribavirin with-10.27 and-9.06 respectively. Their estimated binding free energies against the receptor are-27.80,-27.91,-32.39,-27.91 and-29.50 kcal/mol compared to remdesivir and ribavirin with-24.27 and-15.37 kcal/mol respectively. Similar inhibition patterns were observed against the viral S-protein and the human ACE2 with high stability and bio-functionality. Conclusion: The identi ed compounds show promising potentials amenable for breakthrough against the drug-resistant COVID-19 upon further studies.
Letters in Drug Design & Discovery
Background: SARS-CoV-2 causes COVID19 disease where there are no suitable drugs available. Objective: The objective of the work is to repurpose the drugs prescribed for SARS-CoV as the drugs for the control of SARS-CoV-2. Methods:: In this work, we have used homology searches and docking methods for understanding the mechanism of the drugs prescribed for the control of SARS-CoV on SARS-CoV-2. Results: In our analysis, we found that the drugs Benzyl (2-Oxopropyl)carbamate, 2-[(2,4-Dichloro- 5-methyl phenyl)sulfonyl]-1,3-dinitro-5-(trifluoromethyl)benzene, S-[5-(Trifluoromethyl)-4H-1,2,4- triazol-3-YL] 5-(phenylethynyl)furan-2-carbothioate, 4-(Dimethylamino)benzoic acid, which are capable of inhibition of the activity of 3CLPro and prevent the progression of SARS-CoV. Conclusion: In this letter, we describe the findings of the protein ligand interactions between 3CLPro of SARS-CoV, SARS-CoV-2 with Benzyl (2-oxopropyl) carbamate.
Journal of the Chinese Medical Association, 2020
Recently, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was quickly identified as the causal pathogen leading to the outbreak of SARS-like illness all over the world. As the SARS-CoV-2 infection pandemic proceeds, many efforts are being dedicated to the development of diverse treatment strategies. Increasing evidence showed potential therapeutic agents directly acting against SARS-CoV-2 virus, such as interferon, RNA-dependent RNA polymerase inhibitors, protease inhibitors, viral entry blockers, neuraminidase inhibitor, vaccine, antibody agent targeting the SARS-CoV-2 RNA genome, natural killer cells, and nucleocytoplasmic trafficking inhibitor. To date, several direct anti-SARS-CoV-2 agents have demonstrated promising in vitro and clinical efficacy. This article reviews the current and future development of direct acting agents against SARS-CoV-2.
Review of studies on SARS-CoV-2 infection inhibitors
Annals of Agricultural and Environmental Medicine
Introduction and objective. COVID-19 is a human infectious disease manifested by acute respiratory syndrome. On 30 January, 2020, the Word Heath Organization (WHO) declared a COVID-19 pandemic. The purpose of this article is to review publications on the search for substances that show inhibitory activity against SARS-CoV-2 infectivity, paying particular attention to the effect on different stages of the life cycle of the virus. Review methods. The review was based on an analysis of the latest available scientific literature and international databases. The data collected relate to the years 2020-2021. Brief description of the state of knowledge. Extremely intensive research is underway to find compounds that inhibit infection with the SARS-CoV-2 virus. Promising areas of research among the many current endeavours are antiviral compounds that stimulate the immune system, counter proliferation or affect individual viral replication cycles. These include, among others, interferons, monoclonal antibodies, natural compounds, peptides, aptamers, metal salts, and anti-inflammatory agents, inhibitors of viral enzymem, such as the RNA-dependent RNA polymerase. Preparations that help the body to combat the effects of infection have also assumed much importance. Conclusions. The ongoing research is focused on the development of new antiviral agents, as well as the use of the existing drugs on the market. The results of clinical trials are promising and give hope for the development of effective therapies against SARS-CoV-2 and emerging variants of this virus.
Small molecules targeting severe acute respiratory syndrome human coronavirus
Proceedings of The National Academy of Sciences, 2004
Severe acute respiratory syndrome (SARS) is an infectious disease caused by a novel human coronavirus. Currently, no effective antiviral agents exist against this type of virus. A cell-based assay, with SARS virus and Vero E6 cells, was developed to screen existing drugs, natural products, and synthetic compounds to identify effective anti-SARS agents. Of >10,000 agents tested, Ϸ50 compounds were found active at 10 M; among these compounds, two are existing drugs (Reserpine 13 and Aescin 5) and several are in clinical development. These 50 active compounds were tested again, and compounds 2-6, 10, and 13 showed active at 3 M. The 50% inhibitory concentrations for the inhibition of viral replication (EC50) and host growth (CC50) were then measured and the selectivity index (SI ؍ CC50͞EC50) was determined. The EC50, based on ELISA, and SI for Reserpine, Aescim, and Valinomycin are 3.4 M (SI ؍ 7.3), 6.0 M (SI ؍ 2.5), and 0.85 M (SI ؍ 80), respectively. Additional studies were carried out to further understand the mode of action of some active compounds, including ELISA, Western blot analysis, immunofluorescence and flow cytometry assays, and inhibition against the 3CL protease and viral entry. Of particular interest are the two anti-HIV agents, one as an entry blocker and the other as a 3CL protease inhibitor (Ki ؍ 0.6 M).