Three-dimensional structure and antigen binding specificity of antibodies (original) (raw)
Related papers
Journal of Molecular Recognition, 1994
The reaction between the mouse (BALB/c) anti-idiotopic monoclonal antibodies E225 and E5.2 and idiotopes on the (BALB/c) anti-lysozyme monoclonal antibody D1.3 has been characterized by titration calorimetry, by equilibrium sedimentation and by the determination of binding association and dissociation rates. The reaction between E5.2 and D1.3 is driven by a large negative enthalpy and its rate and equilibrium association constants are comparable to those observed in other antigen-antibody reactions. In contrast, the reaction between E225 and D1.3 is entropically driven and characterized by slow association kinetics (1 X 10' M -I sec-I) and a resulting low equilibrium constant (K. = 2 X lo5 M-I). A correlation of these properties with the three-dimensional structure of the Fab225-FabD1.3 complex, previously determined by X-ray diffraction methods to 2.5 A resolution, indicates that conformational changes of several D1.3 contacting residues, located in its complementarity determining regions, may explain these features of the reaction.
Three-dimensional structure of a heteroclitic antigen-antibody cross-reaction complex
Proceedings of the National Academy of Sciences, 1993
Although antibodies are highly specific, cross-reactions are frequently observed. To understand the molecular basis of this phenomenon, we studied the anti-hen egg lysozyme (HEL) monoclonal antibody (mAb) D11.15, which cross-reacts with several avian lysozymes, in some cases with a higher affinity (heteroclitic binding) than for HEL. We have determined the crystal structure of the Fv fragment of D11.15 complexed with pheasant egg lysozyme (PHL). In addition, we have determined the structure of PHL, Guinea fowl egg lysozyme, and Japanese quail egg lysozyme. Differences in the affinity of D11.15 for the lysozymes appear to result from sequence substitutions in these antigens at the interface with the antibody. More generally, cross-reactivity is seen to require a stereochemically permissive environment for the variant antigen residues at the antibody-antigen interface.
Crystal Structure of Anti-Hen Egg White Lysozyme Antibody (HyHEL-10) Fv-Antigen Complex
Journal of Biological Chemistry, 1999
In order to address the recognition mechanism of the fragments of antibody variable regions, termed Fv, toward their target antigen, an x-ray crystal structure of an anti-hen egg white lysozyme antibody (HyHEL-10) Fv fragment complexed with its cognate antigen, hen egg white lysozyme (HEL), was solved at 2.3 Å. The overall structure of the complex is similar to that reported in a previous article dealing with the Fab fragment-HEL complex (PDB ID code, 3HFM). However, the areas of Fv covered by HEL upon complex formation increased by about 100 Å 2 in comparison with the Fab-HEL complex, and two local structural differences were observed in the heavy chain of the variable region (VH). In addition, small but significant local structural changes were observed in the antigen, HEL. The x-ray data permitted the identification of two water molecules between the VH and HEL and six water molecules retained in the interface between the antigen and the light chain complementarity determining regions (CDRs) 2 and 3 (CDR-L2 and CDR-L3). These water molecules bridge the antigenantibody interface through hydrogen bond formation in the VL-HEL interface. Eleven water molecules were found to complete the imperfect VH-VL interface, suggesting that solvent molecules mediate the stabilization of interaction between variable regions. These results suggest that the unfavorable effect of deletion of constant regions on the antigen-antibody interaction is compensated by an increase in favorable interactions, including structural changes in the antigen-antibody interface and solvent-mediated hydrogen bond formation upon complex formation, which may lead to a minimum decreased affinity of the antibody Fv fragment toward its antigen.
Three-dimensional structure of an antibody-antigen complex
Proceedings of the National Academy of Sciences of the United States of America, 1987
We have determined the three-dimensional structure of two crystal forms of an antilysozyme Fab-lysozyme complex by x-ray crystallography. The epitope on lysozyme consists of three sequentially separated subsites, including one long, nearly continuous, site from Gln-41 through Tyr-53 and one from Gly-67 through Pro-70. Antibody residues interacting with lysozyme occur in each of the six complementarity-determining regions and also include one framework residue. Arg-45 and Arg-68 form a ridge on the surface of lysozyme, which binds in a groove on the antibody surface. Otherwise the surface of interaction between the two proteins is relatively flat, although it curls at the edges. The surface of interaction is approximately 26 X 19 A. No water molecules are found in the interface. The positive charge on the two arginines is complemented by the negative charge of Glu-35 and Glu-50 from the heavy chain of the antibody. The backbone structure of the antigen, lysozyme, is mostly unperturbe...
Journal of Biological Chemistry, 2003
Decreased affinity of an antibody for a mutated epitope in an antigen can be enhanced and reversed by mutations in certain antibody residues. Here we describe the crystal structures of (a) the complex between a naturally mutated proteinaceous antigen and an antibody that was mutated and selected in vitro, and (b) the complex between the normal antigen and the mutated antibody. The mutated and selected antibody recognizes essentially the same epitope as in the wild-type antibody, indicating successful target site-directed functional alteration of the antibody. In comparing the structure of the mutated antigen-mutant antibody complex with the previously established structure of the wild-type antigen-wild-type antibody complex, we found that the enhanced affinity of the mutated antibody for the mutant antigen originated not from improvements in local complementarity around the mutated sites but from subtle and critical structural changes in nonmutated sites, including an increase in variable domain interactions. Our findings indicate that only a few mutations in the antigen-binding region of an antibody can lead to some structural changes in its paratopes, emphasizing the critical roles of the plasticity of loops in the complementarity-determining region and also the importance of the plasticity of the interaction between the variable regions of immunoglobulin heavy and light chains in determining the specificity of an antibody.
Orientation of antigen binding sites in dimeric and trimeric single chain Fv antibody fragments
FEBS Letters, 1998
Electron microscopy of dimeric and trimeric single chain antibody Fv fragments (scFvs) complexed with antiidiotype Fab fragments was used to reveal the orientation of antigen binding sites. This is the first structural analysis that discloses the multivalent binding orientation of scFv trimers (triabodies). Three different scFv molecules were used for the imaging analysis; NC10 scFv-5 and scFv-0, with five-and zeroresidue linkers respectively between the V r and V v domains, were complexed with 3-2G12 anti-idiotype Fab fragments and 11-1G10 scFv-0 was complexed with NC41 anti-idiotype Fab fragments. The scFv-5 molecules formed bivalent dimers (diabodies) and the zero-linker scFv-0 molecules formed trivalent trimers (triabodies). The images of the NC10 diabody-Fab complex appear as boomerangs, not as a linear molecule, with a variable angle between the two Fab arms and the triabody-Fab complexes appear as tripods.
Synthetic Antibodies with a Known Three-Dimensional Structure
The problem of discriminating self from nonself with exquisite specificity has prompted nature to develop several classes of binding proteins, of which the antibodies are the best studied. Immunoglobulins are a family of rather stable and similar molecules that are able to bind to a large number of different antigens. It is therefore tempting tocarry nature•s system of "protein engineering 11 to the laboratory.