3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation (original) (raw)

Analytical chemistry, 2015

Abstract

Herein, we describe the development of a multilayer droplet microfluidic system for creating concentration gradients and generating microdroplets of varying composition for high-throughput biochemical and cell-based screening applications. The 3D droplet-based microfluidic device consists of multiple PDMS layers, which are used to generate logarithmic concentration gradient reagent profiles. Parallel flow focusing structures are used to form picoliter-sized droplets of defined volumes but of varying composition. As proof of concept, we demonstrate rapid enzymatic activity assays and drug cytotoxicity assays on bacteria. The 3D droplet-based microfluidic platform has the potential to allow for high-efficiency and high-throughput analysis, overcoming the structural limitations of single layer microfluidic systems.

Dong-ku Kang hasn't uploaded this paper.

Let Dong-ku know you want this paper to be uploaded.

Ask for this paper to be uploaded.