Tar evolution in a two stage fluid bed–plasma gasification process for waste valorization (original) (raw)
2014, Fuel Processing Technology
This work focuses on systematic studies of the plasma reforming of newly evolved vapors from a fluid bed gasifier, and on the resulting evolution of individual gaseous cracking products to hydrogen-rich syngas. The aim of this study is to compare some previously developed mechanisms of thermal cracking and to identify the main elementary reactions and the most sensible ones for tar decomposition in a two-stage process. Evaluation of plasma chemistry is performed by a comparison between experimental data and thermal kinetic predicted results. Distribution analysis of condensable organics shows that for all the representative species, the levels of tars are distinct in the first stage and almost negligible after the plasma treatment. Under the given reaction conditions, the organic cracking products such as methane and C 2 -species are completely converted to carbon monoxide and hydrogen, and no soot significantly formed. Oxygen atoms initially formed from CO 2 were identified as the major active species involved in the oxidative decomposition of hydrocarbon intermediates and soot precursors. As a result, a two-stage system shows better reforming results, large treatment capacity and almost complete carbon conversion.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.