Physical-Chemical Properties and Transfection Activity of Cationic Lipid/DNA Complexes (original) (raw)

AI-generated Abstract

A wide range of practical applications in life science is closely connected to supramolecular organization at the nanoscale. Self-assembling and ordering of DNA molecules at planar, oppositely charged surfaces is of particular interest for the preparation of biomaterials, functional nanostructures, DNA chips, biosensors and nanodevices. Another important field requiring a deeper understanding of the mechanisms of DNA interactions with cationic lipids is medical gene therapy, which seems to be the most innovative method in the treatment of genetic and serious acquired diseases including cancer, AIDS, Parkinson's and Alzheimer's diseases and cardiovascular disorders. Lipid/DNA complexes mimic the ability of natural viruses to transfect genetic material to the cell core. In contrast to the viral systems these complexes do not have immunogenic potential or restrictions with regard to the size of the delivered gene fragments. However, cationic lipids and also other non-viral vectors such as polymers and peptides suffer from low transfection efficacy and pronounced toxicity. Further success will only be achieved by designing new compounds followed by in vitro tests of their transfection activity and cytotoxicity. Here we present new and cheap gene transfer vectors. The lipid part including the backbone is represented by long chain branched fatty acids which are essential for the stability of the complexes with DNA. The synthesis of two novel cationic lipids as well as the physical-chemical characterization of the new compounds organized as Langmuir monolayers at the air-water interface will be described. Special focus was put on the coupling of DNA with the monolayer resulting in a one-dimensional ordering of bio-macromolecules at the charged surface. Despite a large number of publications devoted to different aspects of DNA/cationic monolayer interaction, the influence of the chemical structure of lipid molecules as well as of the monolayer phase state on the coupling behavior is not fully understood. Therefore, emphasis was placed on a detailed physical-chemical characterization of the novel amphiphilic compounds accompanied by biological testing. Successful delivery of DNA-based therapeutics requires a certain stability of the DNA/vector complex in the slightly acidic environment of the endosomes followed by in situ liberation of drugs in cytosole or nucleus, where the pH value is close to 7. It has been already shown that the subphase pH value influences clearly the protonation state of the newly synthesized cationic lipids. Thus, the other important question to be investigated is the perspective to use the novel compounds as pH-sensitive delivery vectors, that means to study in detail the effect of the subphase pH value on the physical-chemical properties of the Investigation of DNA interactions with cationic lipids is of particular importance for the fabrication of biosensors and nanodevices. Furthermore, lipid/DNA complexes can be applied for direct delivery of DNA-based biopharmaceuticals to damaged cells as non-viral vectors. To obtain more effective and safer DNA vectors, the new cationic lipids 2-tetradecylhexadecanoic acid-{2-[(2-aminoethyl)amino]ethyl}amide (CI) and 2-tetradecylhexadecanoic acid-2-[bis (2-aminoethyl)amino]ethylamide (CII) were synthesized and characterized. The synthesis, physical-chemical properties and first transfection and toxicity experiments are reported. Special attention was focused on the capability of CI and CII to complex DNA at low and high subphase pH values. Langmuir monolayers at the air/water interface represent a well-defined model system to study the lipid/ DNA complexes. Interactions and ordering of DNA under Langmuir monolayers of the new cationic lipids were studied using film balance measurements, grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XR). The results obtained demonstrate the ability of these cationic lipids to couple with DNA at low as well as at high pH value. Moreover, the observed DNA structuring seems not to depend on subphase pH conditions. An influence of the chemical structure of the lipid head group on the DNA binding ability was clearly observed. Both compounds show good transfection efficacy and low toxicity in the in vitro experiments indicating that lipids with such structures are promising candidates for successful gene delivery systems.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (55)

  1. M. E. A. Downs, S. Kobayashi, I. Karube, Anal. Lett. 1987, 20, 1897-1987.
  2. Z. Junhui, C. Hong, Y. Ruifl, Biotechnol. Adv. 1997, 15, 43-58.
  3. J. Wang, Nucleic Acids Res. 2000, 28, 3011-3016.
  4. F. C. Simmel, W. U. Dittmer, Small 2005, 1, 284-299.
  5. M. Artemyev, D. Kisiel, S. Abmiotko, M. N. Antipina, G. B. Khomutov, V. V. Kislov, A. A. Rakhnyanskaya, J. Am. Chem. Soc. 2004, 126, 10594-10597.
  6. W. F. Anderson, Nature 1998, 392, 25-30.
  7. R. A. Stull, F. C. Szoka, Pharm. Res. 1995, 12, 465-483.
  8. S. D. Patil, D. J. Burgess, AAPS Newsmagazine 2003, 6.
  9. K. K. Hunt, S. A. Vorburger, Science 2002, 297, 415-416.
  10. J. Sen, A. Chaudhuri, J. Med. Chem. 2005, 48, 812-820.
  11. A. Aissaoui, B. Martin, E. Kan, N. Oudrhiri, M. Hauchecorne, J. P. Vigner- on, J. M. Lehn, J. Med. Chem. 2004, 47, 5210-5223.
  12. G. B. Sukhorukov, L. A. Feigin, M. M. Montrel, B. I. Sukhorukov, Thin Solid Films 1995, 259, 79-84.
  13. G. B. Sukhorukov, M. M. Monterl, A. I. Petrov, L. I. Shabarchina, B. I. Su- khorukov, Biosens. Bioelectron. 1996, 11, 913-922.
  14. Y. Okahata, K. Tanaka, Thin Solid Films 1996, 284-285, 6-8.
  15. M. M. Montrel, G. B. Sukhorukov, A. I. Petrov, L. I. Shabarchina, B. I. Su- khorukov, Sens. Actuators, B 1997, 42, 225-231.
  16. K. Kago, H. Matsuoka, R. Yoshitome, H. Yamaoka, K. Ijiro, M. Shimomura, Langmuir 1999, 15, 5193-5196.
  17. M. Sastry, V. Ramakrishnan, M. Pattarkine, K. N. Ganesh, J. Phys. Chem. B 2001, 105, 4409-4414.
  18. V. Ramakrishnan, M. D'Costa, K. N. Ganesh, M. Sastry, Langmuir 2002, 18, 6307-6311.
  19. V. Ramakrishnan, M. D'Costa, K. N. Ganesh, M. Sastry, J. Colloid Interface Sci. 2004, 276, 77-84.
  20. S. Erokhina, T. Berzina, L. Cristofolini, O. Konovalov, V. Erokhin, M. P. Fon- tana, Langmuir 2007, 23, 4414-4420.
  21. S. Gromelski, G. Brezesinski, Langmuir 2006, 22, 6293-6301.
  22. S. D. Patil, D. G. Rhodes, D. J. Burgess, AAPS J. 2005, 7, E61-E77.
  23. M. N. Antipina, B. Dobner, O. V. Konovalov, V. L. Shapovalov, G. Brezesin- ski, J. Phys. Chem. B 2007, 111, 13845-13850.
  24. M. Antipina, I. Schulze, B. Dobner, A. Langner, G. Brezesinski, Langmuir 2007, 23 3919-3936.
  25. J. H. Felgner, R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai, R. Border, P. Ramsey, M. Martin, P. L. Felgner, J Biol Chem. 1994, 269, 2550-2561.
  26. H. E. J. Hofland, L. Shephard, S. M. Sullivan, Proc. Natl. Acad. Sci. USA 1996, 93, 7305-7309.
  27. J. P. Slotte, Biochim. Biophys. Acta, Biomembr. 1995, 1238, 118-126.
  28. J. P. Slotte, Biochim. Biophys. Acta, Biomembr. 1995, 1237, 127-134.
  29. J. P. Hagen, H. M. McConnell Biochim. Biophys. Acta Biomembr. 1997, 1329, 7-11.
  30. S. Neidle, Oxford Handbook of Nucleic Acid Structure, Oxford University Press, Oxford 1999.
  31. A. D. Bates, A. Maxwell, DNA Topology, Oxford University Press, Oxford 2005, p. 109.
  32. R. R. Schmidt, K. Jankowski, Liebigs Ann. 1996, 867-879.
  33. F. L. Breusch, E. Ulusey, Chem. Ber. 1953, 86, 688-692.
  34. J. Als-Nielsen, D. Jacquemain, K. Kjaer, M. Lahav, F. Levellier, L. Leisero- witz, Phys. Rep. 1994, 246, 251-313.
  35. D. Jacquemain, F. Leveiller, S. Weinbach, M. Lahav, L. Leiserowitz, K. Kjaer, J. Als-Nielsen, J. Am. Chem. Soc. 1991, 113, 7684-7691.
  36. V. M. Kaganer, H. Mçhwald, P. Dutta, Rev. Mod. Phys. 1999, 71, 779-819.
  37. K. Kjaer, Physica B 1994, 198,100-109.
  38. R. Rietz, W. Rettig, G. Brezesinski, W. G. Bouwman, K. Kjaer, H. Mçhwald, Thin Solid Films 1996, 285, 211-215.
  39. C. Symietz, M. Schneider, G. Brezesinski, H. Mçhwald, Macromolecules 2004, 37, 3865-3875.
  40. T. R. Jensen, K. Kjaer, Structural Properties and Interactions of Thin Films at the Air-Liquid Interface Explored by Synchrotron Scattering in Novel Methods to Study Interfacial Layers (Ed. R. Miller) Elsevier, Amsterdam 2001, 205-254.
  41. I. Weissbuch, R. Popovitz-Biro, M. Lahav, L. Leiserowitz, K. Kjaer, J. Als- Nielsen, Adv. Chem. Phys. 1997, 102, 39-120.
  42. J. S. Pedersen, J. Appl. Crystallogr. 1992, 25, 129-145.
  43. I. W. Hamley, J. S. Pedersen, J. Appl. Crystallogr. 1994, 27, 29-35.
  44. J. S. Pedersen, I. W. Hamley, J. Appl. Crystallogr. 1994, 27, 36-49.
  45. M. Schalke, M. Lçsche, Adv. Colloid Interface Sci. 2000, 88, 243-274.
  46. M. Schalke, P. Krüger, M. Weygand, M. Lçsche, Biochim. Biophys. Acta Bi- omembr. 2000, 1464, 113-126.
  47. C. A. Helm, H. Mçhwald, K. Kjaer, J. Als-Nielsen, Europhys. Lett. 1987, 4, 697-703.
  48. A. D. Miller, Angew. Chem. 1998, 110, 1862-1880; Angew. Chem. Int. Ed. 1998, 37, 1768-1785.
  49. J. Sen, A. Chaudhuri, J. Med. Chem. 2005, 48, 812-820.
  50. D. D. Lasic, Liposomes in Gene Delivery CRC Press, Boca Raton, FL, 1997.
  51. R. N. Hull, W. R. Cherry, In Vitro 1976, 12, 670-677.
  52. Quiagen Plasmid Purification handbook, www1.qiagen.com/Plasmid/ handbooks.aspx.
  53. V. M. Yenugonda, R. Mukthavaram, A. Chaudhuri, J. Med. Chem. 2004, 47, 3938-3948.
  54. I. M. Rosenberg, Protein Analysis and Purification: Benchtop Techniques, Bikhäuser, Boston 1996.
  55. T. Mosmann, J. Immunol. Methods 1983, 65, 55-63. Received: January 30, 2009 Published online on September 3, 2009