A summary of strontium and oxygen isotope variation in archaeological human tooth enamel excavated from Britain (original) (raw)

Abstract

This paper presents a compilation of strontium and oxygen isotope data from human tooth enamel that has been produced at NERC Isotope Geosciences Laboratory over the last c.15 years. These many and often small studies are here combined to provide an overview of data from Britain. The strontium isotope composition ranges between 0.7078 and 0.7165 (excluding individuals deemed to be of non-British origin). The median Sr concentration is 84 ppm but there is a vector of increasing Sr concentrations related to seawater strontium isotope composition that is seen in individuals predominantly from the west coast of Scotland attributed to the used of kelp as a fertilizer. The oxygen isotope data is normally distributed with a mean value of 17.7 per mil +/- 1.4 per mil (2SD n = 615). Two subpopulations of local individuals have been identified that provide control groups for human enamel values from the eastern side of Britain where there are lower rainfall levels: 17.2 per mil +/- 1.3 per mil, (2SD, n = 83) and western area of Britain where rainfall levels are higher 18.2 per mil +/- 1 per mil, (2SD, n = 40). These data make it possible to make direct comparisons of population means between burial populations and the control dataset to assess commonality of origin.

Figures (14)

Fig. 1 An outline of Great Britain showing the location of the archaeological sites from which data are presented. Those designated with a diamond or triangle are used to define the two subsets of lower and higher rainfall areas, respectively.

Fig. 1 An outline of Great Britain showing the location of the archaeological sites from which data are presented. Those designated with a diamond or triangle are used to define the two subsets of lower and higher rainfall areas, respectively.

Fig. 2. A scatter diagram of strontium concentrations (ppm) plotted against *’Sr/*°Sr isotope ratio for all British burials given in Appendix 1 (see ESI)7.

Fig. 2. A scatter diagram of strontium concentrations (ppm) plotted against *’Sr/*°Sr isotope ratio for all British burials given in Appendix 1 (see ESI)7.

Fig. 3. Boxplot comparison of the strontium isotope composition of tooth enamel from Britain compared with biosphere data from Britain.

Fig. 3. Boxplot comparison of the strontium isotope composition of tooth enamel from Britain compared with biosphere data from Britain.

Fig. 4 An histogram of the best estimate for the distribution of oxygen isotope composition in tooth enamel from Britain, excluding 52 indi- viduals deemed unlikely to be of British origin (see main text).

Fig. 4 An histogram of the best estimate for the distribution of oxygen isotope composition in tooth enamel from Britain, excluding 52 indi- viduals deemed unlikely to be of British origin (see main text).

Fig. 6 A bloxplot comparison of drinking water values, derived from tooth enamel, with directly measured values from drinking water sources, both from Britain.  Fig. 5 An histogram of shallow ground and well water oxygen isotope composition from Britain (see appendix 2, ESIT).

Fig. 6 A bloxplot comparison of drinking water values, derived from tooth enamel, with directly measured values from drinking water sources, both from Britain. Fig. 5 An histogram of shallow ground and well water oxygen isotope composition from Britain (see appendix 2, ESIT).

Table 1

Table 1

Fig. 8 Comparison of 5'8O~vsmowy tooth enamel data from different times. It should be noted that these groups do not all sample the same geographic distributions.

Fig. 8 Comparison of 5'8O~vsmowy tooth enamel data from different times. It should be noted that these groups do not all sample the same geographic distributions.

Fig. 9 A comparison of the normal distributions of oxygen isotope composition of human tooth enamel from British sites where burials are taken to be predominantly of local origin.

Fig. 9 A comparison of the normal distributions of oxygen isotope composition of human tooth enamel from British sites where burials are taken to be predominantly of local origin.

Fig. 10 A comparison of the population means (95% CI) of tooth enamel oxygen isotope composition from Roman Period site at Catterick, Yorkshire, and four individuals from an Anglo Saxon site at Easington, on the east coast of Yorkshire, compared with the control datasets for the higher and lower rainfall areas of Britain.

Fig. 10 A comparison of the population means (95% CI) of tooth enamel oxygen isotope composition from Roman Period site at Catterick, Yorkshire, and four individuals from an Anglo Saxon site at Easington, on the east coast of Yorkshire, compared with the control datasets for the higher and lower rainfall areas of Britain.

Fig. 11. A probability density curve for oxygen isotope composition from Roman Period burials at the Lankhills cemetery near Winchester. The curve is constructed allocating a blanket error of +0.15% to all the oxygen isotope analyses.

Fig. 11. A probability density curve for oxygen isotope composition from Roman Period burials at the Lankhills cemetery near Winchester. The curve is constructed allocating a blanket error of +0.15% to all the oxygen isotope analyses.

Fig. 12 A map of the geographic extent of the Roman Empire (excluding Britain) contoured for rainwater oxygen isotope composition derived from GNIP data“! and including a tabulation of the percentage areas associated with the different water compositions.  eee on eo nn —n—e— geen ee ee nee ee ee no nn nen nee IIS  The combined probability of oxygen and strontium isotope values for Britain is given in Table 1. This table is based on numerically combining the surface area expression of both the strontium biosphere values, derived from calculating the relative areas of isotope subdivision on the British strontium biosphere map*' and the area of drinking water isotope compositions derived from the 1%, contoured map.*” About 1% of the area of Britain can accommodate a combination of strontium isotope   ratios below 0.7092 and drinking water values above —6%,. The most likely place that could accommodate this combination is somewhere such as the Isle of Skye where oxygen isotope compositions are heaviest and strontium biosphere values might yield low enough *’Sr/*°Sr values.

Fig. 12 A map of the geographic extent of the Roman Empire (excluding Britain) contoured for rainwater oxygen isotope composition derived from GNIP data“! and including a tabulation of the percentage areas associated with the different water compositions. eee on eo nn —n—e— geen ee ee nee ee ee no nn nen nee IIS The combined probability of oxygen and strontium isotope values for Britain is given in Table 1. This table is based on numerically combining the surface area expression of both the strontium biosphere values, derived from calculating the relative areas of isotope subdivision on the British strontium biosphere map*' and the area of drinking water isotope compositions derived from the 1%, contoured map.*” About 1% of the area of Britain can accommodate a combination of strontium isotope ratios below 0.7092 and drinking water values above —6%,. The most likely place that could accommodate this combination is somewhere such as the Isle of Skye where oxygen isotope compositions are heaviest and strontium biosphere values might yield low enough *’Sr/*°Sr values.

Fig. 13 Comparison of the population means at 95% confidence inter- vals of tooth enamel oxygen isotope composition from the Amesbury Archer and Companion against the defining population datasets for British higher and lower rainfall areas.

Fig. 13 Comparison of the population means at 95% confidence inter- vals of tooth enamel oxygen isotope composition from the Amesbury Archer and Companion against the defining population datasets for British higher and lower rainfall areas.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (77)

  1. R. A. Bentley, J. Archaeol. Method Theory, 2006, 13, 135-187.
  2. A. A. Levinson, B. Luz and Y. Kolodny, Appl. Geochem., 1987, 2, 367-371.
  3. V. Daux, C. Lecuyer, M. A. Heran, R. Amiot, L. Simon, F. Fourel, F. Martineau, N. Lynnerup, H. Reychler and G. Escarguel, J. Hum. Evol., 2008, 55, 1138-1147.
  4. C. Chenery, G. M€ uldner, J. Evans, H. Eckardt and M. Lewis, J. Archaeol. Sci., 2010, 37, 150-163.
  5. J. Montgomery, University of Bradford, 2002.
  6. J. Montgomery, P. Budd and J. A. Evans, Eur. J. Archaeol., 2000, 3, 407-422.
  7. J. Montgomery, J. A. Evans and T. Neighbour, J. Geol. Soc., 2003, 160, 649-653.
  8. J. Evans, N. Stoodley and C. Chenery, J. Archaeol. Sci., 2006, 33, 265-272.
  9. J. A. Evans, C. A. Chenery and A. P. Fitzpatrick, Archaeometry, 2006, 48, 309-321.
  10. M. A. Trickett, Durham University, 2007.
  11. H. Sale, University of Bradford, 2008.
  12. K. Hemer, Proc. Isle of Man Nat. Hist. and Antiq. Soc., 2012, XII.
  13. G. M€ uldner, C. Chenery and H. Eckardt, J. Archaeol. Sci., 2011, 38, 280-290.
  14. J. Richardson, D. Alldritt, C. Barclay, I. Brooks, J. Carrott, C. Chernery, H. Cool, J. Cowgill, P. Didsbury, J. Evans, C. Fern, G. Gaunt, K. Hartley, D. Heslop, M. Holst, T. Manby, E. Morris, F. Wild and D. Williams, York. Arch. Jour., 2011, 83, 59-100.
  15. S. Hughes, C. Chenery, J. Evans, A. Millard, S. Lucy, G. Nowell and G. Pearson, in prep.
  16. E. Hindmarch, ed., Living and dying at Auldhame, East Lothian: the excavation of an Anglican monastic settlement and Medieval parish church. in press.
  17. J. Montgomery, C. Kn€ usel and K. Tucker, in The Bioarchaeology of the Human Head: Decapitation, Decoration and Deformation, ed. M. Bonogofsky, University Press of Florida, Gainesville. 2011, pp. 141-178.
  18. J. Montgomery, J. A. Evans and C. A. Chenery, in Wasperton: A Roman, British and Anglo-Saxon Cemetery in Central England. Woodbridge, ed. M. O. H. Carver, C. Hills and J. Scheschkewitz, Boydell and Brewer. 2009, pp. 46-47.
  19. S. Leach, H. Eckardt, C. Chenery, G. Mueldner and M. Lewis, Antiquity, 2010, 84, 131-145.
  20. A. L. Lamb, M. Melikian, R. Ives and J. A. Evans, J. Anal. At. Spectrom., 2012, DOI: 10.1039/C2JA10363J.
  21. E. Biddulph and K. Welsh, Cirencester before Corinium: excavations at Kingshill North, Cirencester, Gloucestershire, 2011.
  22. P. Budd, C. Chenery, J. Montgomery, J. Evans and D. Powlesland, Plasma Source Mass Spectrometry: Applications and Emerging Technologies, 2003, 195-208.
  23. E. Biddulph, K. Walsh, major contribution by, D. Mullen, other contributions by, L. Allen, P. Booth, C. Champness, S. Clough, J. Cotter, J. Evans, R. Ixar, L. Keys, A. Lamb, R. Nicholson, C. Poole, F. Roe, I. Scott, L. Strid, R. Shaffey, W. Smith, D. Stansbie, R. Taylor, J. Timby, H. Webb and A. Zochowski, in Thames Valley Landscapes Oxford Archaeology. 2011, vol. 34.
  24. R. A. Hall, J. Buckberry, R. Storm, P. Budd, W. D. Hamilton and G. McCormac, York. Arch. Jour., 2008, 80, 55-92.
  25. C. A. Chenery and J. A. Evans, York. Arch. Jour., in press.
  26. O. Lelong, Fluid identities and shifting sands: Early Bronze Age burials at Cnip Headland, Isle of Lewis, Proceedings of the Society of Antiquaries of Scotland (Forthcoming).
  27. P. T. Bidwell, A. T. Croon, The Roman fort at Bainbridge, Wensleydale: excavations by B. R. Hartley on the principa and a summary account of other excavations and surveys. D41(2012).
  28. C. Trueman, C. Chenery, D. A. Eberth and B. Spiro, J. Geol. Soc., 2003, 160, 895-901.
  29. N. Woodcock and R. Strachan, ed., Geological History of Britain and Ireland, Blackwell Science, Oxford. 2000.
  30. C. Chenery, J. A. Evans, D. Score and A. Boyle, J. of N. Atlan. accepted.
  31. J. A. Evans, J. Montgomery, G. Wildman and N. Boulton, J. Geol. Soc., 2010, 167, 1-4.
  32. J. D. Blum, E. H. Taliaferro and R. T. Holmes, Oecologia, 2001, 126, 569-574.
  33. J. Montgomery, J. A. Evans and R. E. Cooper, Appl. Geochem., 2007, 22, 1502-1514.
  34. V. Romari's-Hortas, C. Garcia-Sartal, M. C. Barciela-Alonso, A. Moreda-Pineiro and P. Bermejo-Barreta, J. Agric. Food Chem., 2010, 58, 1986-1992.
  35. D. Dungworth, P. Degryse and J. Schneider, in Studies in Archaeological Sciences -Isotopes in Vitreous Material, ed. P. Degryse, J. Henderson and G. Hodgkin, Leuven University Press, Leuven. 2009.
  36. Y. A. Sapozhnikov, S. N. Kalmykov, I. P. Efimov and V. P. Remez, Appl. Radiat. Isot., 1996, 47, 887-888.
  37. T. Morita, K. Fujimoto, H. Kasai, H. Yamada and K. Nishiuchi, J. Environ. Monit., 2010, 12, 1179-1186.
  38. J. Montgomery, J. A. Evans, and C. A. Chenery, ed., Combined lead, strontium and oxygen isotope analysis of the female adult from High Pasture Cave, Isle of Skye, Historic Scotland, Edinburgh. 2007.
  39. A. P. Fitzpatrick, Excavations at Boscombe Down, Wessex Archaeology, 2011.
  40. C. Heighway, Review of the Gloucester and District Archaeological Research Society, in press.
  41. IAEA/WMO, in The GNIP database. 2006.
  42. S. P. Lykoudis and A. A. Argiriou, J. of Geophys. Res.-Atmospheres, 2007, 112.
  43. S. Hillson, Dental Anthropology, Cambridge University Press, Cambridge. 1996.
  44. P. Macpherson, Sheffield, 2006.
  45. W. G. Darling, A. H. Bath, J. J. Gibson and K. Rozanski, in Isotopes in Palaeoenvironmental Research, ed. M. J. Leng, Springer, Netherlands. 2006, vol. 10, pp. 1-52.
  46. T. Fronval, N. B. Jensen and B. Buchardt, Geology, 1995, 23, 463- 466.
  47. W. C. Darling, A. H. Bath and J. C. Talbot, HESS, 2003, 7, 183- 195.
  48. R. Brettell, J. Montgomery and J. Evans, J. Anal. At. Spectrom.DOI: 10.1039/C2JA10335D.
  49. W. Dansgaard, Tell, 1964, 16, 171-177.
  50. R. A. Rohde. 2005. http://en.wikipedia.org/wiki/File:Holocene\_Tem perature_Variations.png.
  51. S. Tatham, Leicester University, 2004.
  52. J. A. Evans, S. Tatham, S. R. Chenery and C. A. Chenery, Appl. Geochem., 2007, 22, 1994-2005.
  53. J. A. Evans and S. Tatham, in Forensic Geoscience: Principles, Techniques and Applications, ed. K. Pye and D. J. Croft, Geological Society, London, Bath. 2004, vol. 232, pp. 237-248.
  54. M. P. Pearson, A. Chamberlain, O. Craig, P. Marshall, J. Mulville, H. Smith, C. Chenery, M. Collins, G. Cook, G. Craig, J. Evans, J. Hiller, J. Montgomery, J. L. Schwenninger, G. Taylor and T. Wess, Antiquity, 2005, 79, 529-546.
  55. R. Toolis, w. contributions, J. Barrett, N. Boulton, C. Chenery, J. Evans, D. Hall, A. MacSween, M. Melikian and M. Richards, Proc. Soc. Antiq. of Scotland, 2008, 138, pp. 239-266.
  56. J. A. Evans and C. A. Chenery, NIGL Report 282, 2005.
  57. C. Chenery, H. Eckardt and G. M€ uldner, J. Archaeol. Sci., 2011, 38, 1525-1536.
  58. R. Brettell, S. Marzinzik, J. Evans and J. Montgomery, Eur. J. of Arch., in press.
  59. K. M. Frei and R. Frei, Appl. Geochem., 2011, 26, 325-340.
  60. H. Eckardt, C. Chenery, P. Booth, J. A. Evans, A. Lamb and G. Muldner, J. Archaeol. Sci., 2009, 36, 2816-2825.
  61. G. Clarke, Pre-Roman and Roman Winchester. Part II: the Roman cemetery at Lankhills, University of Oxford, Oxford. 1979.
  62. A. M. Pollard, M. Pellegrini and J. A. Lee-Thorp, Am. J. of Phys. Anthropol., 2011.
  63. J. A. Evans, J. Montgomery and G. Wildman, J. Geol. Soc., 2009, 166, 617-631.
  64. K. Asch. 2005, IGME 5000: 1 : 5 Million International Geological Map of Europe and Adjacent Areas, BRG, Hannover.
  65. S. Voerkelius, G. D. Lorenz, S. Rummel, C. R. Qu etel, G. Heiss, M. Baxter, C. Brach-Papa, P. Deters-Itzelsberger, S. Hoelzl, J. Hoogewerff, E. Ponzevera, M. V. Bocxstaele and H. Ueckermann, Food Chem., 2010, 118, 933-940.
  66. J. Henderson, J. Evans and Y. Barkoudah, Antiquity, 2009, 83, 414- 429.
  67. A. Nafplioti, in The prehistory of the island of Kythnos,(Cyclades, Greece) and the Mesolithic settlement at Maroulas, ed. A. Sampson, M. Kaczanowska and J. K. Kozlowski, The Polish Academy of Arts and Sciences. 2010, pp. 207-215.
  68. A. Nafplioti, J. Archaeol. Sci., 2008, 35, 2307-2317.
  69. K. Killgrove, J. Montgomery and R. Tykot, Am. J. Phys. Anthropol., 2011, 144, 185-185.
  70. J. Henderson, J. Evans and K. Nikita, Mediterr.Archaeol. Ar., 2010, 10, 1-24.
  71. L. S. Bell, J. A. Lee Thorp and A. Elkerton, J. Archaeol. Sci., 2009, 36, 166-173.
  72. L. S. Bell, J. A. Lee-Thorp and A. Elkerton, J. Archaeol. Sci., 2010, 37, 683-686.
  73. A. R. Millard and H. Schroeder, J. Archaeol. Sci., 2010, 37, 680-682.
  74. G. Grupe, T. D. Price, P. Schroter, F. Sollner, C. M. Johnson and B. L. Beard, Appl. Geochem., 1997, 12, 517-525.
  75. T. D. Price, J. Wahl and R. A. Bentley, Eur. J. Archaeol., 2006, 9, 259- 284.
  76. M. M. Schweissing and G. Grupe, J. Archaeol. Sci., 2003, 30, 1373- 1383.
  77. K. Rozanski, in Problems of stable isotopes in tree rings, lake sediments and peat bogs as climatic evidence for the Holocene ed. B. Frenzel, B. Stauffer and M. Weiß, Fischer, Stuttgart 1995, vol. 15, pp. 171-186.