Geoelectrical Imaging at an Abandoned Waste Dump Site in Ibadan, Southwestern Nigeria (original) (raw)
2011, Journal of Applied Sciences
Leachate-effluent from refuse dump site is an important source of groundwater pollution. Consequently, assessing the impact of leachate is an active area of groundwater research. Geoelectrical imaging was carried out at an abandoned waste dump site in Ibadan, southwestern Nigeria, with the aim of determining how accurately electrical measurements could delineate the influx of leachate into groundwater and surface water. Eight electrical-resistivity profiles were measured. Four of the traverses were conducted on the dump site whereas two traverses were measured towards the lower side to assess possible ingress of the leachate. The other two lines were measured about 300 m from the site to serve as control. Elevation data were collected using Global Positioning System. The resistivity data were inverted using the least-square technique. The inversion delineated regions of low resistivity (<20 Ωm) believed to be leachate derived from decomposed waste. Non-degraded refuse occurred as isolated regions of higher resistivity (>20 Ωm). The highest resistivity regions (>100 Ωm) were interpreted as regolith derived from chemical weathering of the crystalline bedrock. Resistivity-derived thickness of the leachate zone was consistent with the thickness derived from the elevation data. It could be inferred that there was high concentration of leachate towards the lower elevation hence the adjoining stream is prone to pollution. This study showed that 2D imaging can be effective in imaging pollution plumes around refuse dump sites. The method can be useful to assess opportunity for remediation measures in situations where the leachate has reached the groundwater system.
Related papers
A geophysical investigation involving 2D resistivity survey was carried out on Lapite dump site that has been in operation since 1998 in ancient city of Ibadan, Southwestern Nigeria. The aim was to map the conductive leachate plume and extent of migration of leachate plumes in the subsurface for possible groundwater contamination. The 2D resistivity survey was carried out using Campus Tigre model resistivity meter with Wenner array configuration of electrode spacing distance ranging from 5-25m. A total of nine (9) 2D resistivity profiles with length ranging between 80 and 120 m were conducted within the dump site. A control profile of 2D resistivity survey was also carried out at about 300 m away from the dump site. The obtained resistivity data was interpreted using both RES2DINV and RES3DINV respectively. The 2D and 3D inverse resistivity models of the subsurface revealed the extent of leachate plumes with resistivity values less than 10 Ωm and allowed the location of leachate, clay soil, bedrock and seepage path from the dumpsite to be clearly delineated. There may be possible contamination of shallow groundwater system in the nearest future if proper mitigation measures are not taken into consideration at the dumpsite.
2020
An electrical resistivity survey was carried out to detect the level of groundwater pollution on Oru and Ikoto dumpsites respectively as it was observed that the dumpsites were sited ignoring the environmental and health hazard. The survey was conducted using ABEM model terrameter with schlumberger array for 1-D vertical electrical sounding (VES) of electrode spacing ranging from 0.25m to 4m. Four VES was conducted on each dumpsite with length between 1m to 120m. The data obtained from the field were interpreted using WINRESIST from which the curve types of each study area were identified. On Oru dumpsite, measurement of VES1 was taken on the dumpsite, VES2 was taken 20m away from the dumpsite, VES3 and VES4 were taken across the road serving as control. Here, there is indication of leachate pollution in VES1 (layer 2) and VES2 (layer 3) while VES3 and VES4 are leachate free, but this leachate present in VES1 and VES2 cannot penetrate into the groundwater table because of the strati...
Journal of the Nigerian Society of Physical Sciences
In recent times, large waste is produced especially in an urban area due to population with careless handling which calls for worries. Hence, the study determines the effect of Akanran dumpsite on the groundwater quality for drinking and domestic purposes. It employs the geophysical and geochemical methods. Wenner configuration was adopted with constant electrode separation ranging from 5 to 25 m to acquire five profiles within and outside the dumpsite and processed using DIPROWIN 4.01 software. Soil and water samples were collected and analysed. The 2-D pseudosection revealed a very low resistivity value which is less than 10 ohm-meter and is suspected to be leachate infiltration which migrates to a depth of 7 m. The results of soil analysis show that clay ranges between 9.61 - 18.8 %., silt between 9.27 – 19.7 % and an average bulk density of 1.48 (relatively high for a sandy loam) which suggests that infiltration of the leachate is minimal. The pH of the water sample analysis obt...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.