Fully connected network of superconducting qubits in a cavity (original) (raw)

2008, New Journal of Physics

A fully-connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin-Meshkov-Glick model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger-Horne-Zeilinger and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington-Kirkpatrick spin glasses, with superconducting qubit networks. PACS numbers: 03.67.-a, 75.10.Pq