Fluid flow in a dynamic mechanical model of the vocal folds and tract. I. Measurements and theory (original) (raw)

Pressure and flow measurements in a dynamic mechanical model of the larynx and vocal tract

A dynamic mechanical model of the vocal folds and tract has been developed. The model has moving shutters representing the vocal folds, which intersect with a uniform rectangular duct representing the sub- and supra- vocal tract. The dimensions of the model are those of a typical adult male and the shutters can be driven sinusoidally at frequencies up to 80 Hz. Duct-wall pressure measurements and velocity measurements obtained within the duct by a hotwire anemometer have been obtained. The development of the jet at the glottal exit is discussed for two different upstream boundary conditions: with and without a large compliant volume representing the lungs.

A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds

The Journal of the Acoustical Society of America, 2011

A theoretical flow solution is presented for predicting the pressure distribution along the vocal fold walls arising from asymmetric flow that forms during the closing phases of speech. The resultant wall jet was analyzed using boundary layer methods in a non-inertial reference frame attached to the moving wall. A solution for the near-wall velocity profiles on the flow wall was developed based on a Falkner-Skan similarity solution and it was demonstrated that the pressure distribution along the flow wall is imposed by the velocity in the inviscid core of the wall jet. The method was validated with experimental velocity data from 7.5 times life-size vocal fold models, acquired for varying flow rates and glottal divergence angles. The solution for the asymmetric pressures was incorporated into a widely used two-mass model of vocal fold oscillation with a coupled acoustical model of sound propagation. Asymmetric pressure loading was found to facilitate glottal closure, which yielded only slightly higher values of maximum flow declination rate and radiated sound, and a small decrease in the slope of the spectral tilt. While the impact on symmetrically tensioned vocal folds was small, results indicate the effect becomes more significant for asymmetrically tensioned vocal folds.

Finite-element modeling of vocal fold self-oscillations in interaction with vocal tract: Comparison of incompressible and compressible flow model

Applied and Computational Mechanics, 2021

Finite-element modeling of self-sustained vocal fold oscillations during voice production has mostly considered the air as incompressible, due to numerical complexity. This study overcomes this limitation and studies the influence of air compressibility on phonatory pressures, flow and vocal fold vibratory characteristics. A two-dimensional finite-element model is used, which incorporates layered vocal fold structure, vocal fold collisions, large deformations of the vocal fold tissue, morphing the fluid mesh according to the vocal fold motion by the arbitrary Lagrangian-Eulerian approach and vocal tract model of Czech vowel [i:] based on data from magnetic resonance images. Unsteady viscous compressible or incompressible airflow is described by the Navier-Stokes equations. An explicit coupling scheme with separated solvers for structure and fluid domain was used for modeling the fluid-structure-acoustic interaction. Results of the simulations show clear differences in the glottal fl...

Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx

Journal of biomechanics, 2015

Compressible large eddy simulation is employed to numerically investigate the laryngeal flow. Symmetric static models of the human larynx with a divergent glottis are considered, with the presence of false vocal folds (FVFs). The compressible study agrees well with that of the incompressible study. Due to the high enough Reynolds number, the flow is unsteady and develops asymmetric states downstream of the glottis. The glottal jet curvature decreases with the presence of FVFs or the ventricular folds. The gap between the FVFs stretches the flow structure and reduces the jet curvature. The presence of FVFs has a significant effect on the laryngeal flow resistance. The intra-glottal vortex structures are formed on the divergent wall of the glottis, immediately downstream of the separation point. The vortices are then convected downstream and characterized by a significant negative static pressure. The FVFs are a main factor in the generation of stronger vortices, and thus on the closu...

Numerical approximations of flow induced vibrations of vocal folds

AIP Conference Proceedings, 2010

The paper focus on mathematical modelling of incompressible fluid flow interacting with vibrations of an elastic vocal fold. The flow in moving domain is modelled by the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian (ALE) form. The channel geometry is an approximation of the human glottal region. The flow model is coupled with a simplified structure model. The problem is mathematically described and the resulting fluid-structure interaction problem is discretized by a stabilized finite element method. A strong coupling algorithm is applied for solution of the coupled fluid-structure problem. The choice of boundary conditions is discussed, particularly the choice of different artificial inlet/outlet boundary conditions is described in details. The numerical results are shown. 2 Mathematical model The mathematical description of the interaction of incompressible flow and vocal folds consists of equations of

Sound generation by steady flow through glottis-shaped orifices

Journal of The Acoustical Society of America, 2004

Although the signature of human voice is mostly tonal, it also includes a significant broadband component. Quadrupolelike sources due to turbulence in the region downstream of the glottis, and dipolelike sources due to the force applied by the vocal folds onto the surrounding fluid are the two primary broadband sound generating mechanisms. In this study, experiments were conducted to characterize the broadband sound emissions of confined stationary jets through rubber orifices formed to imitate the approximate shape of the human glottis at different stages during one cycle of vocal fold vibrations. The radiated sound pressure spectra downstream of the orifices were measured for varying flow rates, orifice shapes, and gas mixtures. The nondimensional sound pressure spectra were decomposed into the product of three functions: a source function F, a radiation efficiency function M , and an acoustic response function G. The results show that, as for circular jets, the quadrupole source contributions dominated for straight and convergent orifices. For divergent jets, whistling tonal sounds were emitted at low flow rates. At high flow rates for the same geometry, dipole contributions dominated the sound radiated by free jets. However, possible source-load acoustic feedback may have hampered accurate source identification in confined flows.

Computational aeroacoustics of phonation, Part II: Effects of flow parameters and ventricular folds

Journal of The Acoustical Society of America, 2002

The aerodynamic generation of sound during phonation was studied using direct numerical simulations of the airflow and the sound field in a rigid pipe with a modulated orifice. Forced oscillations with an imposed wall motion were considered, neglecting fluid-structure interactions. The compressible, two-dimensional, axisymmetric form of the Navier-Stokes equations were numerically integrated using highly accurate finite difference methods. A moving grid was used to model the effects of the moving walls. The geometry and flow conditions were selected to approximate the flow within an idealized human glottis and vocal tract during phonation. Direct simulations of the flow and farfield sound were performed for several wall motion programs, and flow conditions. An acoustic analogy based on the Ffowcs Williams-Hawkings equation was then used to decompose the acoustic source into its monopole, dipole, and quadrupole contributions for analysis. The predictions of the farfield acoustic pressure using the acoustic analogy were in excellent agreement with results from the direct numerical simulations. It was found that the dominant sound production mechanism was a dipole induced by the net force exerted by the surfaces of the glottis walls on the fluid along the direction of sound wave propagation. A monopole mechanism, specifically sound from the volume of fluid displaced by the wall motion, was found to be comparatively weak at the frequency considered ͑125 Hz͒. The orifice geometry was found to have only a weak influence on the amplitude of the radiated sound.

Influence of a constriction in the near field of the vocal folds: Physical modeling and experimental validation

The Journal of the Acoustical Society of America, 2008

The involvement of the ventricular folds is often observed in human phonation and, in particular, in pathological and or some throat-singing phonation. This study aims to explore and model the possible aerodynamic interaction between the ventricular and vocal folds using suitable in vitro setups allowing steady and unsteady flow conditions. The two experimental setups consist of a rigid and a self-oscillating vocal-fold replica, coupled to a downstream rigid ventricular-fold replica in both cases. A theoretical flow modeling is proposed to quantify the aerodynamic impact of the ventricular folds on the pressure distribution and thereby on the vocal-fold vibrations. The mechanical behavior of the vocal folds is simulated by a distributed model accounting for this impact. The influence of the ventricular constriction is measured in both flow conditions and compared to the model outcome. This study objectively evaluates the additional pressure drop implied by the presence of a ventricular constriction in the larynx. It is demonstrated that such constriction can either facilitate or impede the glottal vibrations depending on the laryngeal geometrical configuration. The relevance of using static or dynamic vocal-fold replicas is discussed.

Measurement of flow separation in a human vocal folds model

Experiments in Fluids, 2011

The paper provides experimental data on flow separation from a model of the human vocal folds. Data were measured on a four-times scaled physical model, where one vocal fold was fixed and the other oscillated due to fluidstructure interaction. The vocal folds were fabricated from silicone rubber and placed on elastic support in the wall of a transparent wind tunnel. A PIV system was used to visualize the flow fields immediately downstream of the glottis and to measure the velocity fields. From the visualizations, the position of the flow separation point was evaluated using a semiautomatic procedure and plotted for different airflow velocities. The separation point position was quantified relative to the orifice width separately for the left and right vocal folds to account for flow asymmetry. The results indicate that the flow separation point remains close to the narrowest cross-section during most of the vocal fold vibration cycle, but moves significantly further downstream shortly prior to and after glottal closure.