Preparation of chemical vapor sensing materials from composites of esterified poly(vinyl alcohol) and carbon black (original) (raw)

Effects of electrode configuration on polymer carbon-black composite chemical vapor sensor performance

Sensors Journal, …, 2002

The performance of polymer carbon-black composite chemical vapor sensors as a function of underlying electrode size and geometry has been studied. The sensor performance parameters investigated were sensor response magnitude to a toluene analyte (100, 500, and 1000 ppm), fundamental sensor noise in the presence of air, and two concentrations of toluene (100 and 500 ppm), and signal-to-noise ratio (100 and 500 ppm). An array of sensors with 42 different circular electrode configurations were designed, fabricated, and tested where electrode gap was varied from 10 to 500 m and the diameter of the sensors was varied from 30 to 2000 m. Each array of electrodes was coated with an approximately 1-m-thick layer of conducting polymer carbon-black composite with an insulating poly(alkylacrylate) polymer. The response magnitude, fundamental noise, and signal-to-noise ratio of each sensor was measured and compared to electrode geometry, such as electrode gap, aspect ratio, and overall size. No significant dependence of sensor response magnitude and noise to electrode configuration has been observed to be larger than the variation from sensor to sensor. However, the signal-to-noise ratio tended to decrease for sensors with the smallest scales.

The investigation of sensing mechanism of ethanol vapour in polymer-nanostructured carbon composite

Central European Journal of Physics, 2010

Polymer-nanostructured carbon composites (PNCC) using three different polymers as composite matrix materials (polyvinylacetate (PVAc), polyethylene glycol (PEG) and ethylene-vinylacetate copolymer (EVA)) have been developed. High structure carbon black Printex XE2 (Degussa AG) was used as a composites filler. Ethanol vapour sensor-effect of composites was determined as a change of electrical resistance as the composite was held in ethanol vapour for 30 seconds. Reversibility of electrical resistance of PNCC, response stability and repeatability have been measured and compared. The electrical resistance response of EVA-nanostructured carbon composite (EVA-NCC) to ethanol vapour as a function of vinylacetate content in the copolymer has been evaluated. Promising ethanol vapour sensor-effect has been observed for PEG-NCC followed by PVAc-NCC and EVA-NCC.

Response of poly(vinyl acetate)/carbon black composites to ethanol vapour and temperature

2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716), 2004

Ahxtsrmcr -The effect of ethanol vapour and temperature was investigatcd on gas sensors fabricated from poly(viny1 acetate)\carbon black composites based around a predetermined percolation threshold. Samples with 8% carbon black loading displayed the best response to the ethanol vapour. Typical response and recovery times of 140s and 45s respectively were recorded. In addition, bridge structures were fabricated, where all four resistive elements were prepared from the same composite material and in which a novel passivation process was employed. It was observed that these bridge stmchres were significantly less affected by variations in temperature in comparison to the single sensor structures.

On the fabrication process of polymer-composites based sensors

The results of investigations of the effects of two organic solvents of preparation, tetrahydrofuran (THF) and 1,1,1,3,3,3 Hexafluoro-2-propanol (HFIP), and of three different electrical geometry of devices on drop-coated poly (methyl-methacrylate)/ carbon black (PMMA/CB) composites gas sensors are presented. Using HFIP solvent, it is possible to obtain a good dispersion of the CB filler in the polymeric matrix but the thermodynamic responses of devices to acetone and ethanol vapours are independent from their morphology and from the geometry of devices. The highest sensor responses are to acetone vapor. This behavior could be probably attributed to the higher chemical affinity of less polar molecule as acetone towards PMMA. The filler dispersions, the current-voltage (I/V) characteristics and the stability of devices in the time were also studied and discussed.

Properties of multifunctional polymers – carbon black composite vapor

Publishing House of Lviv Polytechnic National University, 2011

In this work the electrical properties of vapor detectors, formed from composites of conductive carbonblack and insulating organic multifunctional polymers having metal ions complexing ability, were investigated. The new composites are tailored to produce increased sensitivity toward specific classes of analyte vapors. Resonant frequency shift of a Quartz Crystal Microbalance (QCM) and dc resistance measurements have been also performed simultaneously on polymer-carbon black composite materials. For comparison purpose, poly(vinyl chloride) (PVC) with di(2-ethylhexyl)phthalate (DOP), a traditional low molecular weight plasticizer, is used as a representative of the behaviour of a traditional composite vapor detector. These new detectors showed an enhanced sensitivity upon exposure to acetic acid and amines vapors; the performances of our systems are 10 3 times higher than those of a traditional composite vapor detector. Moreover the extent of such responses is beyond that expected by mass uptake upon exposure to the same vapors and cannot be attributed solely to differences in polymer/gas partition coefficients. In this respect, several different chemical factors determine the dc electrical response of this system: in our opinion changes in polymer conformation during the adsorption process also play a significant role. The effects of the temperature on the electric resistance of the vapor detectors have also been studied. These materials showed a discontinuity in the temperature dependence of their resistance, and this discontinuity provided a simple method for determining the T g of the composites.

A STUDY on the sensitivity and selectivity properties of Polymer based gas-vapor sensors

Journal of the Turkish Chemical Society, Section A: Chemistry, 2016

In this study, the water soluble poly (diphenylaminesulfonic acid) (PSDA) and the diblock copolymer of PSDA with poly(ethylene glycol) (PEG) were used to construct the interdigitated film electrodes (IDEs). Their responses against humidity and various solvent vapors were investigated by impedance measurements. Sorption and desorption behaviors of the solvents were determined by simultaneous registration of the impedance (Z) and the resistive (R, resistance) and capacitive (X, reactance) components of the Z under different potential bias and alternating current (ac) frequencies. The sensor responses were discussed considering the polar/non-polar and polarizability properties of the polymers and solvents. The effect of ac frequency and potential bias on the sensitivity and selectivity of the sensors were discussed. It was found that the solvent polarity is the primary effect on the electrical conductance and capacitance of both PSDA homopolymer and PSDA-b-PEG block copolymer. The results supported that the dipolarity-polarizability properties of solvents have also a critical role on sensor response at low ac frequencies. The more polarizable solvents gave higher sensor responses at lower ac frequencies. The equilibrium response of the PSDA based sensor was correlated with the dielectric constant of the solvents. The values of Z and R of PSDA film under saturated solvent vapors at 1 kHz ac frequency were linearly correlated (R 2 was 0.955, 0.993 and 0.957 for Z, R and X, respectively, in semi-logarithmic scale) with the values of the dielectric constants of the solvents, except water. A similar correlation (R 2 = 0.996) was obtained by using the R values of the PSDA film at 100 kHz ac frequency. In the case of PSDA-b-PEG polymer film, it was also possible to establish an almost linear correlation (R 2 =0.943) between the R at 100 kHz ac frequency and the values of the dielectric constants of the solvents, except acetone and water. Consequently, it was found that the applied ac frequency was distinctive on both the sensitivity and selectivity of the studied sensor.

Composites of Polyvinyl Alcohol and Carbon (Coils, Undoped and Nitrogen Doped Multiwalled Carbon Nanotubes) as Ethanol, Methanol and Toluene Vapor Sensors

Journal of Nanoscience and Nanotechnology, 2011

We investigate the chemical sensing behavior of composites prepared with polyvinyl alcohol and carbon materials (undoped multiwalled carbon nanotubes, nitrogen-doped multiwalled carbon nanotubes and carbon nanocoils). We determine the sensitivity of thin films of these composites for ethanol, methanol and toluene vapor, comparing their conductance and capacitance responses. The composite that exhibits highest sensitivity depends on specific vapor, vapor concentration and measured electrical response, showing that the interactivity of the carbon structure with chemical species depend on structural specificities of the carbon structure and doping.

Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites

Advanced Materials, 1999

The working principle of composite polymer vapor sensors is basically to exploit the vapor absorption properties of an insulating polymer whose electrical properties are modulated by a conductive "filler". Carbon black and graphite powder have already been used as "filler" materials [Sens. In this work we fabricate and characterize vapor sensors with a new type of "filler": carbon nanoparticles obtained by flame synthesis. Electrochemically prepared porous silicon with a 40% porosity has been used as the substrate for the carbon growth. Carbon nanoparticles have been characterized by AFM, SEM, FTIR; XRD, diffraction laser spectroscopy, nitrogen isothermal adsorption and visible optical micrography. The carbon structures seem composed of "units" whose size is in the range 5-20 nm. Composite thin films have been realized using mainly poly(methyl-methacrylate) (PMMA) as polymeric insulating matrix. Thin films of the composite are used to realize chemiresistor sensing devices. The characteristics of the sensors responses to volatile organic compounds (VOCs) are related to filler types in order to optimize the sensing device and show the importance of the filler characteristics.

Alcohol vapor sensory properties of nanostructured conjugated polymers

Journal of Physics: …, 2008

The response to relative humidity (RH) and alcohol vapors of resistive-type sensors based on nanobeads of conjugated polymers, namely polyphenylacetylene (PPA) and copolymer poly[phenylacetylene-(co-2-hydroxyethyl methacrylate)] (P(PA/HEMA)), were investigated. Sensors based on ordered arrays of these nanostructured polymeric materials showed stable and reproducible current intensity variations in the range 10-90% of relative humidity at room temperature. Both polymers also showed sensitivity to aliphatic chain primary alcohols, and a fine tuning of the sensor response was obtained by varying the chain length of the alcohol in relation to the polarity. The nanostructured feature of polymeric-based membranes seems to have an effect on the sensing response and an enhancement of the sensitivity was observed for the response to water and alcohol vapor variations with respect to previous studies based on amorphous polyphenylacetylene. High stability of the polymeric nanostructured membranes was detected with no aging after two weeks in continuum stressing measurement conditions.