Optical actuation of a macroscopic mechanical oscillator (original) (raw)
An intensity-modulated HeNe-laser beam was utilized to optically actuate the mechanical resonance of a macroscopic torsional silicon oscillator ( f 0 = 67 700 Hz, Q = 42 100 at p = 1 mbar and T = 300 K). Both radiation pressure and photothermal effects may cause optical actuation of a mechanical device. Both excitation effects were studied. In actuation through radiation pressure, the actuating laser beam was focused on the high-reflectivity-coated oscillator surface. In the case where the intensity-modulated laser beam was incident on the uncoated silicon surface the photothermal effect was shown to be the dominating excitation factor. Oscillation amplitudes due to the actuation through radiation pressure and photothermal effects were x rad = 1.4pm and x ph = 4.3 pm with the same optical power of 1.5 mW. The measured resonance frequency and quality value were not changed when purely mechanical and radiation pressure actuation mechanisms were compared. With photothermal actuation the absorbed optical power heats the oscillator, introducing a slight decrease in the resonance frequency. Our experiments demonstrate that optical actuation combined with sensitive optical interferometric measurements can be utilized to perform dynamic vibration analysis of micromechanical components. Prospects of using micromechanical devices for observing extremely weak external forces are discussed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.