Role of Protein Kinase C in Reactivation of Kaposi's Sarcoma-Associated Herpesvirus (original) (raw)
Related papers
Role of Protein Kinase C δ in Reactivation of Kaposi's Sarcoma-Associated Herpesvirus
Journal of Virology, 2004
TPA (12- O -tetradecanoylphorbol-13-acetate), a well-known activator of protein kinase C (PKC), can experimentally induce reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) in certain latently infected cells. We selectively blocked the activity of PKC isoforms by using GF 109203X or rottlerin and demonstrated that this inhibition largely decreased lytic KSHV reactivation by TPA. Translocation of the PKCδ isoform was evident shortly after TPA stimulation. Overexpression of the dominant-negative PKCδ mutant supported an essential role for the PKCδ isoform in virus reactivation, yet overexpression of PKCδ alone was not sufficient to induce lytic reactivation of KSHV, suggesting that additional signaling molecules participate in this pathway.
Journal of General Virology, 2006
Kaposi's sarcoma-associated herpesvirus (KSHV) is implicated causally in the development of several human malignancies, including primary effusion lymphoma (PEL). PEL cells serve as tools for KSHV research, as most of them are latently infected and allow lytic virus replication in response to various stimuli. 12-O-Tetradecanoyl-phorbol-13-acetate (TPA) is the most potent inducer of lytic KSHV reactivation; nevertheless, the exact mechanism by which it induces reactivation remains unknown. It has previously been reported by our group that the protein kinase C (PKC) δ isoform plays a crucial role in TPA-mediated KSHV reactivation. Here, the activation pathway was dissected and it was demonstrated that TPA induces KSHV reactivation via stimulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Western blot analysis revealed a rapid phosphorylation of ERK1/2. Cells treated with MAPK/ERK inhibitors before TPA addition demonstrated ...
2010
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8, which is consistently present in tissues of patients with Kaposi's sarcoma and primary effusion lymphomas, contains a gene that encodes a G protein-coupled receptor (KSHV-GPCR). We recently showed that KSHV-GPCR exhibits constitutive signaling via activation of phosphoinositide-specific phospholipase C and stimulates cell proliferation and transformation. In this study, we determined whether normal cellular mechanisms could inhibit constitutive signaling by KSHV-GPCR and thereby KSHV-GPCR-stimulated proliferation. We show that coexpression of GPCR-specific kinases (GRKs) and activation of protein kinase C inhibit constitutive signaling by KSHV-GPCR in COS-1 monkey kidney cells and in mouse NIH 3T3 cells. Moreover, GRK-5 but not GRK-2 inhibits KSHV-GPCR-stimulated proliferation of rodent fibroblasts. These data provide evidence that cell regulatory pathways of receptor desensitization may be therapeutic targets in human diseases involving constitutively active receptors.
Deregulated signal transduction by the K1 gene product of Kaposi's sarcoma-associated herpesvirus
Proceedings of the National Academy of Sciences, 1999
The Kaposi's sarcoma (KS)-associated herpesvirus is a lymphotropic virus strongly implicated in the pathogenesis of KS and several lymphoproliferative disorders. The KS-associated herpesvirus K1 gene encodes a transmembrane protein bearing a functional immunoreceptor tyrosine-based activation motif (ITAM)-like sequence; it previously has been proposed to be important in viral tumorigenesis because its expression can trigger cell proliferation in vitro and in vivo. Here we show that expression of the full-length K1 protein can initiate calcium-dependent signal transduction in B cells; however, unlike other ITAM-based signal transduction events, K1 signaling occurs constitutively, in the absence of exogenous crosslinking ligands. This property is caused by its cysteine-rich ectodomain, which when transferred to other consensus ITAMs induces constitutive signaling. Although ITAM-based signaling by K1 involves classical syk and phospholipase C ␥2 activation, both ITAM-and syk-independent signaling pathways are activated by K1 expression. These studies indicate that K1 is a deregulated signaling molecule with pleitropic effects that may explain its known growth deregulatory properties.
Virology, 2009
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma. K-Rta and K-bZIP are two major viral transcription factors that control reactivation of this virus. Here we report a genome-wide analysis of transcriptional capacity by evaluation of a comprehensive library of 83 putative KSHV promoters. In reporter assays, 34 viral promoters were activated by K-Rta, whereas K-bZIP activated 21 promoters. When K-Rta and K-bZIP were combined, 3 K-Rta responsive promoters were repressed by K-bZIP. The occupancy of K-Rta and K-bZIP across KSHV promoters was analyzed by chromatin immunoprecipitation with a viral promoter-chip in BCBL-1 cells. In addition, acetylation of local histones was examined to determine accessibility of promoters during latency and reactivation. Finally, 10 promoters were selected to study the dynamics of transcription factor recruitment. This study provides a comprehensive overview of the responsiveness of KSHV promoters to K-Rta and K-bZIP, and describes key chromatin changes during viral reactivation.
Journal of virology, 2018
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) causes the angiogenic tumor KS and two B-cell malignancies. The KSHV nonstructural membrane protein encoded by the open reading frame (ORF) K15 recruits and activates several cellular proteins, including phospholipase Cγ1 (PLCγ1), components of the NF-κB pathway, as well as members of the Src family of nonreceptor tyrosine kinases, and thereby plays an important role in the activation of angiogenic and inflammatory pathways that contribute to the pathogenesis of KS as well as KSHV productive (lytic) replication. In order to identify novel cellular components involved in the biology of pK15, we immunoprecipitated pK15 from KSHV-infected endothelial cells and identified associated proteins by label-free quantitative mass spectrometry. Cellular proteins interacting with pK15 point to previously unappreciated cellular processes, such as the endocytic pathway, that could be involved in the function of pK1...
Journal of Virology, 2005
Expression of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic genes is thought to be essential for the establishment and progression of KSHV-induced diseases. The inefficiency of lytic reactivation in various in vitro systems hampers the study of lytic genes in the context of whole virus. We report here increased expression of KSHV lytic genes and increased release of progeny virus when synchronized cultures of body cavity-based lymphoma-1 cells are treated with a phorbol ester during S phase of the cell cycle.
PLOS Pathogens, 2021
Kaposi Sarcoma-associated herpesvirus (KSHV) causes three human malignancies, Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and the plasma cell variant of multicentric Castleman’s Disease (MCD), as well as an inflammatory cytokine syndrome (KICS). Its non-structural membrane protein, pK15, is among a limited set of viral proteins expressed in KSHV-infected KS tumor cells. Following its phosphorylation by Src family tyrosine kinases, pK15 recruits phospholipase C gamma 1 (PLCγ1) to activate downstream signaling cascades such as the MEK/ERK, NFkB and PI3K pathway, and thereby contributes to the increased proliferation and migration as well as the spindle cell morphology of KSHV-infected endothelial cells. Here, we show that a phosphorylated Y481EEVL motif in pK15 preferentially binds into the PLCγ1 C-terminal SH2 domain (cSH2), which is involved in conformational changes occurring during the activation of PLCγ1 by receptor tyrosine kinases. We determined the crystal structure o...