Asymptotics of modified Bessel functions of high order (original) (raw)
International Journal of Pure and Applied Mathematics
Abstract
In this work, we present two sets of full asymptotic expansions for the modified Bessel functions I ν (z) and K ν (z) and a full asymptotic expansion for I ν (z)K ν (z) as ν → ∞ and z is fixed with | arg z| < π. In particular, we show that
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (11)
- G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge (1999).
- C.L. Frenzen, On the asymptotic expansion of Mellin transforms, SIAM J. Math. Anal., 18 (1987), 273-282.
- I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York (1980); Forth Edition (1983).
- R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foun- dation for Computer Science, Addison-Wesley, New York (1989).
- Y.L. Luke, The Special Functions and Their Approximations, Volume I, Academic Press, New York (1969).
- F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York (1974).
- F.W.J. Olver, D.W. Lozier, R.F. Boisvert, .
- W. Clark, Ed-s., NIST Hand- book of Mathematical Functions, Cambridge University Press, Cambridge (2010).
- A. Sidi, Asymptotic expansion of Mellin transforms and analogues of Wat- son's lemma, SIAM J. Math. Anal., 16 (1985), 896-906.
- A. Sidi, Asymptotic expansion of Mellin transforms in the complex plane, Internat. J. Pure and Appl. Math., 71 (2011), 465-480.
- F.G. Tricomi, A. Erdélyi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math., 1 (1951), 133-142.