Finding a cluster-tilting object for a representation finite cluster-tilted algebra (original) (raw)

Abstract

We provide a technique to find a cluster-tilting object having a given cluster-tilted algebra as endomorphism ring in the finite type case.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (15)

  1. I. Assem, D. Simson, A. Skowroński. Elements of the Representation Theory of Associative Algebras. Cambridge University Press, 2006.
  2. M. Auslander, I. Reiten, S. Smalø. Representation Theory of Artin Algebras. Cambridge University Press, 1995.
  3. A. B. Buan, R. J. Marsh, and I. Reiten. Cluster-tilted algebras of finite representation type. J. Algebra, 306(2):412-431, 2006.
  4. A. B. Buan, R. J. Marsh, and I. Reiten. Cluster-tilted algebras. Trans. Amer. Math. Soc., 359(1):323-332 (electronic), 2007.
  5. A. B. Buan, R. J. Marsh, and I. Reiten. Cluster mutation via quiver representations. Com- ment. Math. Helv., 83(1):143-177, 2008.
  6. A. B. Buan, R. J. Marsh, M. Reineke, I. Reiten, and G. Todorov. Tilting theory and cluster combinatorics. Adv. Math., 204(2):572-618, 2006.
  7. A. B. Buan and D. F. Vatne. Derived equivalence classification for cluster-tilted algebras of type An. J. Algebra, 319(7):2723-2738, 2008.
  8. P. Caldero, F. Chapoton, and R. Schiffler. Quivers with relations and cluster tilted algebras. Algebr. Represent. Theory, 9(4):359-376, 2006.
  9. P. Caldero, B. Keller. From triangulated categories to cluster algebras II. Ann. Sci. Ecole Norm. Sup., (4) 39, no. 6, 9831009, 2006.
  10. S. Fomin and A. Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497- 529 (electronic), 2002.
  11. O. Iyama, Y. Yoshino. Mutation in triangulated categories and rigid Cohen-Macaulay mod- ules. Invent. Math., 172 , no. 1, 117-168, 2008.
  12. R. J. Marsh, M. Reineke, and A. Zelevinsky. Generalized associahedra via quiver represen- tations. Trans. Amer. Math. Soc., 355(10):4171-4186 (electronic), 2003.
  13. R. Schiffler. A geometric model for cluster categories of type Dn. J. Algebraic Combin., 27(1):1-21, 2008.
  14. A. Seven. Recognizing cluster algebras of finite type. Electron. J. Combin., 14 (1), 2007.
  15. D. Vatne. The mutation class of Dn quivers, 2008. preprint, arXiv:0810.4789.