Finding a cluster-tilting object for a representation finite cluster-tilted algebra (original) (raw)
Abstract
We provide a technique to find a cluster-tilting object having a given cluster-tilted algebra as endomorphism ring in the finite type case.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (15)
- I. Assem, D. Simson, A. Skowroński. Elements of the Representation Theory of Associative Algebras. Cambridge University Press, 2006.
- M. Auslander, I. Reiten, S. Smalø. Representation Theory of Artin Algebras. Cambridge University Press, 1995.
- A. B. Buan, R. J. Marsh, and I. Reiten. Cluster-tilted algebras of finite representation type. J. Algebra, 306(2):412-431, 2006.
- A. B. Buan, R. J. Marsh, and I. Reiten. Cluster-tilted algebras. Trans. Amer. Math. Soc., 359(1):323-332 (electronic), 2007.
- A. B. Buan, R. J. Marsh, and I. Reiten. Cluster mutation via quiver representations. Com- ment. Math. Helv., 83(1):143-177, 2008.
- A. B. Buan, R. J. Marsh, M. Reineke, I. Reiten, and G. Todorov. Tilting theory and cluster combinatorics. Adv. Math., 204(2):572-618, 2006.
- A. B. Buan and D. F. Vatne. Derived equivalence classification for cluster-tilted algebras of type An. J. Algebra, 319(7):2723-2738, 2008.
- P. Caldero, F. Chapoton, and R. Schiffler. Quivers with relations and cluster tilted algebras. Algebr. Represent. Theory, 9(4):359-376, 2006.
- P. Caldero, B. Keller. From triangulated categories to cluster algebras II. Ann. Sci. Ecole Norm. Sup., (4) 39, no. 6, 9831009, 2006.
- S. Fomin and A. Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497- 529 (electronic), 2002.
- O. Iyama, Y. Yoshino. Mutation in triangulated categories and rigid Cohen-Macaulay mod- ules. Invent. Math., 172 , no. 1, 117-168, 2008.
- R. J. Marsh, M. Reineke, and A. Zelevinsky. Generalized associahedra via quiver represen- tations. Trans. Amer. Math. Soc., 355(10):4171-4186 (electronic), 2003.
- R. Schiffler. A geometric model for cluster categories of type Dn. J. Algebraic Combin., 27(1):1-21, 2008.
- A. Seven. Recognizing cluster algebras of finite type. Electron. J. Combin., 14 (1), 2007.
- D. Vatne. The mutation class of Dn quivers, 2008. preprint, arXiv:0810.4789.