Cardiac mitochondrial dysfunction during hyperglycemia—The role of oxidative stress and p66Shc signaling (original) (raw)

Abstract

Diabetes mellitus is a chronic disease caused by a deficiency in the production of insulin and/or by the effects of insulin resistance. Insulin deficiency leads to hyperglycemia which is the major initiator of diabetic cardiovascular complications escalating with time and driven by many complex biochemical and molecular processes. Four hypotheses, which propose mechanisms of diabetes-associated pathophysiology, are currently considered. Cardiovascular impairment may be caused by an increase in polyol pathway flux, by intracellular advanced glycation end-products formation or increased flux through the hexosamine pathway. The latter of these mechanisms involves activation of the protein kinase C.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (145)

  1. Abbott RD, Donahue RP, Kannel WB, Wilson PW. The impact of diabetes on sur- vival following myocardial infarction in men vs women. The Framingham Study. JAMA 1988;260:3456-60.
  2. Ahmed N. Advanced glycation endproducts-role in pathology of diabetic compli- cations. Diabetes Research and Clinical Practice 2005;67:3-21.
  3. Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population- based study of 13,000 men and women with 20 years of follow-up. Archives of Internal Medicine 2004;164:1422-6.
  4. Anand DV, Lim E, Lahiri A, Bax JJ. The role of non-invasive imaging in the risk stratification of asymptomatic diabetic subjects. European Heart Journal 2006;27:905-12.
  5. Arany I, Faisal A, Clark JS, Vera T, Baliga R, Nagamine Y. p66Shc-mediated mito- chondrial dysfunction in renal proximal tubule cells during oxidative injury. American Journal of Physiology Renal Physiology 2010;298:F1214-21.
  6. Armstrong JS. Mitochondria-directed therapeutics. Antioxidants and Redox Sig- nalling 2008;10:575-8.
  7. Bell DS. Heart failure: the frequent, forgotten, and often fatal complication of dia- betes. Diabetes Care 2003;26:2433-41.
  8. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-20.
  9. Brownlee M, Cerami A. The biochemistry of the complications of diabetes mellitus. Annual Review of Biochemistry 1981;50:385-432.
  10. Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyper- glycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 2005;146:5341-9.
  11. Cai W, He JC, Zhu L, Chen X, Striker GE, Vlassara H. AGE-receptor-1 coun- teracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation. American Journal of Physiology Cell Physiology 2008;294:C145-52.
  12. Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hers- berger M, et al. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proceed- ings of the National Academy of Sciences of the United States of America 2007;104:5217-22.
  13. Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochimica et Biophysica Acta 2005;1734:112-26.
  14. Carpi A, Menabo R, Kaludercic N, Pelicci P, Di Lisa F, Giorgio M. The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochon- drial ROS formation in ischemia/reperfusion injury. Biochimica et Biophysica Acta 2009;1787:774-80.
  15. Chintapalli J, Yang S, Opawumi D, Goyal SR, Shamsuddin N, Malhotra A, et al. Inhibi- tion of wild-type p66ShcA in mesangial cells prevents glycooxidant-dependent FOXO3a regulation and promotes the survival phenotype. American Journal of Physiology Renal Physiology 2007;292:F523-30.
  16. Cohen-Solal A, Beauvais F, Logeart D. Heart failure and diabetes mellitus: epidemi- ology and management of an alarming association. Journal of Cardiac Failure 2008;14:615-25.
  17. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. Journal of the American Society of Nephrology 2009;20:742-52.
  18. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999;22:233-40.
  19. Craven PA, Davidson CM, DeRubertis FR. Increase in diacylglycerol mass in iso- lated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 1990;39:667-74.
  20. Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, et al. In vivo forma- tion of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circula- tion 1999;99:224-9.
  21. Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mel- litus. Circulation 1999;100:813-9.
  22. Diamant M, Lamb HJ, Groeneveld Y, Endert EL, Smit JW, Bax JJ, et al. Diastolic dys- function is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. Journal of the American College of Cardiology 2003;42:328-35.
  23. Droge W. Free radicals in the physiological control of cell function. Physiological Reviews 2002;82:47-95.
  24. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, et al. Hyperglycemia-induced mitochondrial superoxide overproduction acti- vates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proceedings of the National Academy of Sciences of the United States of America 2000;97: 12222-6.
  25. Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochimica et Biophysica Acta 2011;1813:1351-9.
  26. Feener EP, Xia P, Inoguchi T, Shiba T, Kunisaki M, King GL. Role of protein kinase C in glucose-and angiotensin II-induced plasminogen activator inhibitor expression. Contributions to Nephrology 1996;118:180-7.
  27. Finck BN, Kelly DP. Peroxisome proliferator-activated receptor alpha (PPARalpha) signaling in the gene regulatory control of energy metabolism in the nor- mal and diseased heart. Journal of Molecular and Cellular Cardiology 2002;34: 1249-57.
  28. Flarsheim CE, Grupp IL, Matlib MA. Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. American Journal of Physiology 1996;271:H192-202.
  29. Foley K, Boguslavsky S, Klip A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 2011;50:3048-61.
  30. Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A, et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro-and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Current Diabetes Reviews 2011;7:313-24.
  31. Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a sys- tematic review of the evidence. Journal of the American Medical Association 2010;55:1310-7.
  32. Fox CS, Coady S, Sorlie PD, Levy D, Meigs JB, D'Agostino Sr RB, et al. Trends in cardiovascular complications of diabetes. JAMA 2004;292:2495-9.
  33. Gabriely I, Yang XM, Cases JA, Ma XH, Rossetti L, Barzilai N. Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosyn- thetic pathway. Atherosclerosis 2002;160:115-22.
  34. Garcia Soriano F, Virag L, Jagtap P, Szabo E, Mabley JG, Liaudet L, et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nature Medicine 2001;7:108-13.
  35. Gerstein HC, Pais P, Pogue J, Yusuf S. Relationship of glucose and insulin levels to the risk of myocardial infarction: a case-control study. Journal of the American Medical Association 1999;33:612-9.
  36. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001;286:421-6.
  37. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circulation Research 2010;107:1058-70.
  38. Goldberg HJ, Whiteside CI, Fantus IG. The hexosamine pathway regulates the plas- minogen activator inhibitor-1 gene promoter and Sp1 transcriptional activation through protein kinase C-beta I and -delta. Journal of Biological Chemistry 2002;277:33833-41.
  39. Granger CB, Califf RM, Young S, Candela R, Samaha J, Worley S, et al. Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. Journal of the American College of Cardiology 1993;21:920-5.
  40. Grundy SM. Metabolic syndrome scientific statement by the American Heart Asso- ciation and the National Heart, Lung, and Blood Institute. Arteriosclerosis, Thrombosis, and Vascular Biology 2005;25:2243-4.
  41. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, et al. Diabetes and cardiovascular disease: a statement for healthcare pro- fessionals from the American Heart Association. Circulation 1999;100: 1134-46.
  42. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine 1998;339:229-34.
  43. Haga S, Terui K, Zhang HQ, Enosawa S, Ogawa W, Inoue H, et al. Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms. Journal of Clinical Investigation 2003;112:989-98.
  44. Hoogeveen EK, Kostense PJ, Jakobs C, Dekker JM, Nijpels G, Heine RJ, et al. Hyper- homocysteinemia increases risk of death, especially in type 2 diabetes: 5-year follow-up of the Hoorn Study. Circulation 2000;101:1506-11.
  45. Hunt JV, Bottoms MA, Mitchinson MJ. Oxidative alterations in the experimental gly- cation model of diabetes mellitus are due to protein-glucose adduct oxidation. Some fundamental differences in proposed mechanisms of glucose oxidation and oxidant production. Biochemical Journal 1993;291(Pt 2):529-35.
  46. Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL. Preferential eleva- tion of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proceedings of the National Academy of Sciences of the United States of America 1992;89:11059-63.
  47. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996;272:728-31.
  48. James LR, Tang D, Ingram A, Ly H, Thai K, Cai L, et al. Flux through the hexosamine pathway is a determinant of nuclear factor kappaB-dependent promoter acti- vation. Diabetes 2002;51:1146-56.
  49. Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framing- ham Study. American Heart Journal 1985;110:1100-7.
  50. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979;59:8-13.
  51. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002;51:2944-50.
  52. Keogh RJ, Dunlop ME, Larkins RG. Effect of inhibition of aldose reductase on glucose flux, diacylglycerol formation, protein kinase C, and phospholipase A2 activa- tion. Metabolism: Clinical and Experimental 1997;46:41-7.
  53. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998;21:1414-31.
  54. Koya D, King GL. Protein kinase C activation and the development of diabetic com- plications. Diabetes 1998;47:859-66.
  55. Krolewski AS, Kosinski EJ, Warram JH, Leland OS, Busick EJ, Asmal AC, et al. Magnitude and determinants of coronary artery disease in juvenile- onset, insulin-dependent diabetes mellitus. American Journal of Cardiology 1987;59:750-5.
  56. Kuusisto J, Mykkanen L, Pyorala K, Laakso M. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 1994;43:960-7.
  57. Kwaan HC. Changes in blood coagulation, platelet function, and plasminogen- plasmin system in diabetes. Diabetes 1992;41(Suppl. 2):32-5.
  58. Lam EW, Francis RE, Petkovic M. FOXO transcription factors: key regulators of cell fate. Biochemical Society Transactions 2006;34:722-6.
  59. Langer A, Freeman MR, Josse RG, Armstrong PW. Metaiodobenzylguanidine imag- ing in diabetes mellitus: assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. Journal of the American College of Cardiology 1995;25:610-8.
  60. Lashin O, Romani A. Hyperglycemia does not alter state 3 respiration in cardiac mitochondria from type-I diabetic rats. Molecular and Cellular Biochemistry 2004;267:31-7.
  61. Lebiedzinska M, Duszynski J, Rizzuto R, Pinton P, Wieckowski MR. Age-related changes in levels of p66Shc and serine 36-phosphorylated p66Shc in organs and mouse tissues. Archives of Biochemistry and Biophysics 2009;486:73-80.
  62. Lebiedzinska M, Karkucinska-Wieckowska A, Giorgi C, Karczmarewicz E, Pronicka E, Pinton P, et al. Oxidative stress-dependent p66Shc phosphorylation in skin fibroblasts of children with mitochondrial disorders. Biochimica et Biophysica Acta 2010;1797:952-60.
  63. Li L, Renier G. Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism: Clin- ical and Experimental 2006;55:1516-23.
  64. Li M, Chiou KR, Kass DA. Shear stress inhibition of H(2)O(2) induced p66(Shc) phosphorylation by ASK1-JNK inactivation in endothelium. Heart and Vessels 2007;22:423-7.
  65. Liscovitch M, Cantley LC. Lipid second messengers. Cell 1994;77:329-34.
  66. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiological Reviews 2010;90:207-58.
  67. Lumini-Oliveira J, Magalhaes J, Pereira CV, Moreira AC, Oliveira PJ, Ascensao A. Endurance training reverts heart mitochondrial dysfunction, permeability transition and apoptotic signaling in long-term severe hyperglycemia. Mito- chondrion 2011;11:54-63.
  68. Luscher TF, Creager MA, Beckman JA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Circulation 2003;108:1655-61.
  69. Malhotra A, Vashistha H, Yadav VS, Dube MG, Kalra SP, Abdellatif M, et al. Inhibition of p66ShcA redox activity in cardiac muscle cells attenuates hyperglycemia- induced oxidative stress and apoptosis. American Journal of Physiology Heart and Circulatory Physiology 2009;296:H380-8.
  70. Margolis JR, Kannel WS, Feinleib M, Dawber TR, McNamara PM. Clinical features of unrecognized myocardial infarction-silent and symptomatic. Eighteen year follow-up: the Framingham study. American Journal of Cardiology 1973;32:1-7.
  71. Marin-Garcia J, Goldenthal MJ. Fatty acid metabolism in cardiac failure: biochemical, genetic and cellular analysis. Cardiovascular Research 2002;54:516-27.
  72. Mazumder PK, O'Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin- resistant ob/ob mouse hearts. Diabetes 2004;53:2366-74.
  73. McClain DA, Crook ED. Hexosamines and insulin resistance. Diabetes 1996;45:1003-9.
  74. Menini S, Iacobini C, Ricci C, Oddi G, Pesce C, Pugliese F, et al. Ablation of the gene encoding p66Shc protects mice against AGE-induced glomerulopathy by preventing oxidant-dependent tissue injury and further AGE accumulation. Dia- betologia 2007;50:1997-2007.
  75. Messina E, Giacomello A. Diabetic cardiomyopathy: a cardiac stem cell disease involving p66Shc, an attractive novel molecular target for heart failure therapy. Circulation Research 2006;99:1-2.
  76. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 1999;402:309-13.
  77. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coor- dinately downregulated in human diabetes. Nature Genetics 2003;34:267-73.
  78. Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, et al. Coro- nary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation 2000;102:2180-4.
  79. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. Journal of Clinical Investi- gation 2005;115:3587-93.
  80. Murthy VK, Shipp JC. Accumulation of myocardial triglycerides ketotic diabetes; evidence for increased biosynthesis. Diabetes 1977;26:222-9.
  81. Natalicchio A, De Stefano F, Perrini S, Laviola L, Cignarelli A, Caccioppoli C, et al. Involvement of the p66Shc protein in glucose transport regulation in skele- tal muscle myoblasts. American Journal of Physiology Endocrinology and Metabolism 2009;296:E228-37.
  82. Nemoto S, Combs CA, French S, Ahn BH, Fergusson MM, Balaban RS, et al. The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. Journal of Biological Chemistry 2006;281:10555-60.
  83. Niakan E, Harati Y, Rolak LA, Comstock JP, Rokey R. Silent myocardial infarction and diabetic cardiovascular autonomic neuropathy. Archives of Internal Medicine 1986;146:2229-30.
  84. Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics 2005;43:289-330.
  85. Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications. Kidney International Supplement 2000;77:S26-30.
  86. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258:607-14.
  87. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB Journal 1995;9:484-96.
  88. Norhammar A, Tenerz A, Nilsson G, Hamsten A, Efendic S, Ryden L, et al. Glucose metabolism in patients with acute myocardial infarction and no previous diag- nosis of diabetes mellitus: a prospective study. Lancet 2002;359:2140-4.
  89. Oliveira PJ, Rolo AP, Seica R, Palmeira CM, Santos MS, Moreno AJ. Decreased suscepti- bility of heart mitochondria from diabetic GK rats to mitochondrial permeability transition induced by calcium phosphate. Bioscience Reports 2001;21:45-53.
  90. Oliveira PJ, Seica R, Coxito PM, Rolo AP, Palmeira CM, Santos MS, et al. Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Letters 2003;554:511-4.
  91. Oliveira PJ, Seica R, Santos DL, Rolo AP, Sardao VA, Ferreira FM, et al. Vitamin E or coenzyme Q10 administration is not fully advantageous for heart mitochondrial function in diabetic goto kakizaki rats. Mitochondrion 2004;3:337-45.
  92. Ozaki M, Suzuki S, Irani K. Redox factor-1/APE suppresses oxidative stress by inhibit- ing the rac1 GTPase. FASEB Journal 2002;16:889-90.
  93. Ozaki M, Haga S, Zhang HQ, Irani K, Suzuki S. Inhibition of hypoxia/reoxygenation- induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Akt kinase upon rac1. Cell Death and Differentiation 2003;10:508-15.
  94. Pagnin E, Fadini G, de Toni R, Tiengo A, Calo L, Avogaro A. Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: rela- tionship to oxidative stress. Journal of Clinical Endocrinology and Metabolism 2005;90:1130-6.
  95. Palasciano G, Moschetta A, Palmieri VO, Grattagliano I, Iacobellis G, Portincasa P. Non-alcoholic fatty liver disease in the metabolic syndrome. Current Pharma- ceutical Design 2007;13:2193-8.
  96. Pani G, Koch OR, Galeotti T. The p53-p66shc-manganese superoxide dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species. International Journal of Biochemistry and Cell Biology 2009;41:1002-5.
  97. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduc- tion of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proceedings of the National Academy of Sciences of the United States of America 2003;100:8466-71.
  98. Pellegrini M, Pacini S, Baldari CT. p66SHC: the apoptotic side of Shc proteins. Apo- ptosis 2005;10:13-8.
  99. Petruzzelli M, Lo Sasso G, Portincasa P, Palasciano G, Moschetta A. Targeting the liver in the metabolic syndrome: evidence from animal models. Current Pharmaceu- tical Design 2007;13:2199-207.
  100. Pieper GM, Riaz ul H. Activation of nuclear factor-kappaB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. Journal of Cardiovascular Pharmacology 1997;30:528-32.
  101. Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, et al. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 2007;315:659-63.
  102. Portilla D, Dai G, Peters JM, Gonzalez FJ, Crew MD, Proia AD. Etomoxir-induced PPARalpha-modulated enzymes protect during acute renal failure. American Journal of Physiology Renal Physiology 2000;278:F667-75.
  103. Purdom S, Chen QM. Linking oxidative stress and genetics of aging with p66Shc signaling and forkhead transcription factors. Biogerontology 2003;4:181-91.
  104. Qiao Q, Pyorala K, Pyorala M, Nissinen A, Lindstrom J, Tilvis R, et al. Two-hour glucose is a better risk predictor for incident coronary heart disease and cardiovascular mortality than fasting glucose. European Heart Journal 2002;23:1267-75.
  105. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends in Biochemical Sciences 2000;25:502-8.
  106. Ranjadayalan K, Umachandran V, Ambepityia G, Kopelman PG, Mills PG, Timmis AD. Prolonged anginal perceptual threshold in diabetes: effects on exercise capac- ity and myocardial ischemia. Journal of the American College of Cardiology 1990;16:1120-4.
  107. Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. Nutrition 1997;13:65 [discussion 64, 66].
  108. Resnick HE, Howard BV. Diabetes and cardiovascular disease. Annual Review of Medicine 2002;53:245-67.
  109. Reszko AE, Kasumov T, David F, Jobbins KA, Thomas KR, Hoppel CL, et al. Peroxisomal fatty acid oxidation is a substantial source of the acetyl moiety of malonyl-CoA in rat heart. Journal of Biological Chemistry 2004;279:19574-9.
  110. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005;54:8-14.
  111. Rodrigues B, Cam MC, McNeill JH. Myocardial substrate metabolism: implica- tions for diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology 1995;27:169-79.
  112. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology 2006;212:167-78.
  113. Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, et al. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circulation Research 2006;99:42-52.
  114. Santos DL, Palmeira CM, Seica R, Dias J, Mesquita J, Moreno AJ, et al. Diabetes and mitochondrial oxidative stress: a study using heart mitochondria from the dia- betic Goto-Kakizaki rat. Molecular and Cellular Biochemistry 2003;246:163-70.
  115. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a col- laborative meta-analysis of 102 prospective studies. Lancet 2010;375:2215-22.
  116. Schleicher E, Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney Interna- tional Supplement 2007:S17-26.
  117. Scognamiglio R, Negut C, Ramondo A, Tiengo A, Avogaro A. Detection of coronary artery disease in asymptomatic patients with type 2 diabetes mellitus. Journal of the American College of Cardiology 2006;47:65-71.
  118. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB Journal 2004;18:1692-700.
  119. Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce Jr WM, Klein JB, et al. Cardiac mito- chondrial damage and biogenesis in a chronic model of type 1 diabetes. American Journal of Physiology Endocrinology and Metabolism 2004;287:E896-905.
  120. Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Correlation of dia- cylglycerol level and protein kinase C activity in rat retina to retinal circulation. American Journal of Physiology 1993;265:E783-93.
  121. Singer DE, Nathan DM, Anderson KM, Wilson PW, Evans JC. Association of HbA1c with prevalent cardiovascular disease in the original cohort of the Framingham Heart Study. Diabetes 1992;41:202-8.
  122. Skulachev VP, Antonenko YN, Cherepanov DA, Chernyak BV, Izyumov DS, Khailova LS, et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antiox- idant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochimica et Biophysica Acta 2010;1797:878-89.
  123. Song Y, Du Y, Prabhu SD, Epstein PN. Diabetic cardiomyopathy in OVE26 mice shows mitochondrial ROS production and divergence between in vivo and in vitro contractility. The Review of Diabetic Studies 2007;4:159-68.
  124. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993;16:434-44.
  125. Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovascular Research 1997;34: 25-33.
  126. Suski J, Lebiedzinska M, Machado NG, Oliveira PJ, Pinton P, Duszynski J, et al. Mito- chondrial tolerance to drugs and toxic agents in ageing and disease. Current Drug Targets 2011;12:827-49.
  127. Szczepaniak LS, Victor RG, Orci L, Unger RH. Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circulation Research 2007;101:759-67.
  128. Terui K, Haga S, Enosawa S, Ohnuma N, Ozaki M. Hypoxia/re-oxygenation-induced, redox-dependent activation of STAT1 (signal transducer and activator of tran- scription 1) confers resistance to apoptotic cell death via hsp70 induction. Biochemical Journal 2004a;380:203-9.
  129. Terui K, Enosawa S, Haga S, Zhang HQ, Kuroda H, Kouchi K, et al. Stat3 confers resistance against hypoxia/reoxygenation-induced oxidative injury in hepa- tocytes through upregulation of Mn-SOD. Journal of Hepatology 2004b;41: 957-65.
  130. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143-3421.
  131. Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. Journal of Biological Chemistry 2003;278:33972-7.
  132. Turrens JF. Mitochondrial formation of reactive oxygen species. The Journal of Phys- iology 2003;552:335-44.
  133. Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Progress in Hor- mone Research 2001;56:1-21.
  134. Vaccaro O, Eberly LE, Neaton JD, Yang L, Riccardi G, Stamler J. Impact of diabetes and previous myocardial infarction on long-term survival: 25-year mortality follow- up of primary screenees of the Multiple Risk Factor Intervention Trial. Archives of Internal Medicine 2004;164:1438-43.
  135. Wachtell K, Ibsen H, Olsen MH, Borch-Johnsen K, Lindholm LH, Mogensen CE, et al. Albuminuria and cardiovascular risk in hypertensive patients with left ven- tricular hypertrophy: the LIFE study. Annals of Internal Medicine 2003;139: 901-6.
  136. Wallace DC. Mitochondrial genetics: a paradigm for aging and degenerative dis- eases? Science 1992;256:628-32.
  137. Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, et al. Hyper- glycemic pseudohypoxia and diabetic complications. Diabetes 1993;42:801-13.
  138. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The poten- tial role of 'autoxidative glycosylation' in diabetes. Biochemical Journal 1987;245:243-50.
  139. Xia P, Kramer RM, King GL. Identification of the mechanism for the inhibition of Na+,K(+)-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. Journal of Clinical Investigation 1995;96:733-40.
  140. Yannoni YM, Gaestel M, Lin LL. P66(ShcA) interacts with MAPKAP kinase 2 and regulates its activity. FEBS Letters 2004;564:205-11.
  141. Yerneni KK, Bai W, Khan BV, Medford RM, Natarajan R. Hyperglycemia-induced acti- vation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 1999;48:855-64.
  142. Yokoyama I, Momomura S, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. Journal of the American College of Cardiology 1997;30:1472-7.
  143. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004;364:937-52.
  144. Zaccagnini G, Martelli F, Fasanaro P, Magenta A, Gaetano C, Di Carlo A, et al. p66ShcA modulates tissue response to hindlimb ischemia. Circulation 2004;109:2917-23.
  145. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epi- demic. Nature 2001;414:782-7.