Phosphorescence Oxygen Analyzer as a Measuring Tool for Cellular Bioenergetics (original) (raw)

Fluorescence based oxygen uptake analysis in the study of metabolic responses to apoptosis induction

Journal of immunological methods, 2005

Mitochondrial activity has been shown to be centrally involved in the progression of apoptosis. The electron transport chain is a major player in this process and oxygen uptake analysis provides detailed information on its activity. Here we examined the ability of a fluorescence based oxygen uptake assay to inform on cellular responses to apoptosis induction. HL60 cells treated with camptothecin and UV light were used as a model and the ability of the assay to detect dose and time dependent decreases in respiratory activity analysed. The data obtained were compared to more specific markers of apoptosis including annexin V binding, and caspase-3 activity. Reductions in oxygen uptake rates were seen at lower doses than increases in annexin V binding or mitochondrial membrane potential depolarisation. These reductions were observed earlier than detectable caspase-3 activity and were unaffected by pre-treatment with the caspase-3 inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoro-methylketo...

The rate of oxygen utilization by cells

Free Radical Biology and Medicine, 2011

The discovery of oxygen is considered by some to be the most important scientific discovery of all time-from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body-on demand, i.e. just-intime. Humans use oxygen to extract approximately 2550 Calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 moles of dioxygen per day, or 2.5 × 10-4 mol s-1. This is an average rate of oxygen utilization of 2.5 × 10-18 mol cell-1 s-1 , i.e. 2.5 amol cell-1 s-1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from <1 to >350 amol cell-1 s-1. There is a loose positive linear correlation of the rate of oxygen consumption (OCR) by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology.

A monitor for Cellular Oxygen METabolism (COMET): monitoring tissue oxygenation at the mitochondrial level

Journal of clinical monitoring and computing, 2016

After introduction of the protoporphyrin IX-triplet state lifetime technique as a new method to measure mitochondrial oxygen tension in vivo, the development of a clinical monitor was started. This monitor is the "COMET", an acronym for Cellular Oxygen METabolism. The COMET is a non-invasive electrically powered optical device that allows measurements on the skin. The COMET is easy to transport, due to its lightweight and compact size. After 5-aminolevulinic acid application on the human skin, a biocompatible sensor enables detection of PpIX in the mitochondria. PpIX acts as a mitochondrially located oxygen-sensitive dye. Three measurement types are available in the touchscreen-integrated user interface, 'Single', 'Interval' and 'Dynamic measurement'. COMET is currently used in several clinical studies in our institution. In this first description of the COMET device we show an incidental finding during neurosurgery. To treat persisting intraoperati...

Comparison of methods for measuring oxygen consumption in tumor cells in vitro

Analytical Biochemistry, 2010

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright

Apoptosis induction by different pathways with methylene blue derivative and light from mitochondrial sites in V79 cells

International Journal of Cancer, 1998

The importance of mitochondria for the induction of apoptosis by photodynamic therapy (PDT) was studied with a new photosensitizing dye, methylene blue derivative (MBD), and light. By using fluorescence microscopy and by measuring the MBD-PDT-induced inhibition of specifically subcellularly localized marker enzymes, we show that MBD is localized in mitochondria and not in lysosomes, endoplasmic reticulum or Golgi apparatus of V79 Chinese hamster fibroblasts. Cellular uptake kinetics and fluorescence properties of the dye in cells were characterized. Cell death was studied by a cell survival assay and by flow cytometry of cells stained using the terminal deoxynucleotidyl transferase (TdT) assay. MBD with light induced cell death by apoptosis via 2 different pathways, one rapid and one delayed, depending on the amount of dye in the cells. Cells treated with an MBD concentration higher than 0.05 g/ml died by apoptosis within 3 hr after light exposure. At a concentration of 0.05 g/ml MBD, cell death was induced slowly, and apoptotic cells appeared increasingly from the second day after PDT. Combination studies with 2-deoxyglucose (2-DOG) and carbonylcyanide-m-chlorophenylhydrazone (CCCP), inhibitors of glycolysis and oxidative phosphorylation, respectively, indicated that MBD and light inhibited mitochondrial oxidative phosphorylation. Abolishment of both energy sources led to cell death by necrosis within 6 hr. Inhibition of glycolysis alone induced apoptosis between 3 and 6 hr, while inhibition of mitochondrial oxidative phosphorylation alone led to delayed apoptosis within days. Int.

Mitochondria, oxygen free radicals, and apoptosis

American Journal of Medical Genetics, 2001

Reactive oxygen species (ROS) generated by mitochondria are produced as by-products of normal oxidative metabolism. The fate of these species is governed by a number of factors that vary from tissue to tissue in mammals and may be involved in the pathogenesis of disease. Reactive oxygen species are also invoked as agents that are important in the processes which become active in cells undergoing apoptosis. Integration of knowledge surrounding these different aspects of ROS generation is dif®cult and reveals considerable gaps in our understanding.