Cocaine self-administration differentially alters mRNA expression of striatal peptides (original) (raw)

Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1993

The effects of the indirect dopamine receptor agonist cocaine in the striatum on levels of mRNAs of the immediate-early gene c-fos and the neuropeptides dynorphin, substance P, and enkephalin were analyzed with quantitative in situ hybridization histochemistry. Both single (acute) and repeated (twice a day for 4 d) systemic injections of cocaine (3.75-30 mg/kg) to rats resulted in dose-dependent, regionally specific elevations of mRNA expression in striatal neurons. A single drug treatment elevated c-fos mRNA expression, whereas repeated treatments resulted in little c-fos expression but elevated dynorphin mRNA levels. Both the regional and temporal patterns of gene expression revealed an inverse relationship between dynorphin and c-fos expression. This relationship was examined in a time course experiment in which cocaine (30 mg/kg) was administered for 1, 2, 3 or 4 d. Basal levels of dynorphin expression were relatively high in the ventral striatum, including the nucleus accumbens...

Short-term cocaine self administration alters striatal gene expression

Brain Research Bulletin, 1995

Rats serf-administered cocaine or received saline during 3 daily 5 h sessions and were euthanized 1 h after the final session. Quantitative in situ hybridization revealed that cocaine salf-adminislbration increased levels of preprodynorphin, but not preproenkephalin, c-fos, or zif/268 mRNAs in a patchy pattern in the dorsal striatum. These data demonstrate that the regulation of preprodynorphin gene expression is dissociable from that of c-fos and z/f/268 in dorsal striatum following shortterm cocaine self-administration.

Temporal upregulation of prodynorphin mRNA in the primate striatum after cocaine self-administration

European Journal of Neuroscience, 2003

Several human and rat studies suggest that the striatal dynorphin system is important for neuroadaptation following cocaine exposure. In the current study, prodynorphin (PDYN) mRNA expression was examined in monkeys at initial and chronic phases of cocaine selfadministration. Adult Rhesus monkeys were trained to self-administer food (banana flavoured pellets) or cocaine (0.03 or 0.3 mg/kg per injection) on a fixed interval 3-min schedule for 5 or 100 sessions. Each session ended after 30 reinforcers were delivered. The PDYN mRNA expression was analysed in the precommissural striatum using in situ hybridization histochemistry. We found a specific activation of PDYN mRNA expression in the limbic-innervated patch/striosome compartment of the dorsal caudate and dorsal putamen during the initial (i.e. 5 day) phase of the high dose cocaine self-administration. After 100 days of the high dose exposure, the patch/ striosome compartment remained activated, but an increase in PDYN mRNA levels was also evident in the sensorimotor-connected matrix compartment of the caudate. Neither self-administration phase resulted in significant changes in the corresponding striatal regions of the low dose cocaine-exposed primates. Moreover, cocaine self-administration failed to alter the PDYN mRNA expression in high-or low-expressing PDYN cell populations in the nucleus accumbens during any condition studied. These results demonstrate the vulnerability of the dorsal striatum (in particular the caudate) to neuroadaptations following long-term high dose cocaine selfadministration. In addition, the temporal nature of the changes in PDYN gene expression within the striatal compartments could reflect a change in drug responsivity that occurs during the transition to drug dependence.

Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediatem-early gene expression in the striatum

The Journal of Comparative Neurology, 1995

Neurons in the striatum that project to the substantia nigra contain the opioid peptide dynorphin. Stimulation of D1 dopamine receptors results in increased expression of mRNA encoding dynorphin as well as expression of immediate-early genes such as c-fos in these neurons. Levels of dynorphin vary in different regions of the normal rat striatum, being highest in ventral and medial striatum. In a prior study, we have shown that both regional and temporal patterns of c-fos induction following treatment with the indirect dopamine receptor agonist cocaine are inversely related to those of dynorphin expression. These results suggested that dynorphin is involved in regulating the responsiveness of these neurons to dopamine input. In the present experiments, we examined such a potential role for dynorphin by analyzing the influence of the dynorphin (kappa opioid receptor) agonist spiradoline on immediate-early gene induction by cocaine, and we determined that this immediate-early gene response is mediated by D1 dopamine receptors located in the striatum. As a marker of neuron activation, expression of c-fos and zzf 268 immediate-early genes was assessed with quantitative in situ hybridization histochemistry. Results showed that 1) intrastriatal infusion of the D1 dopamine receptor antagonist SCH-23390 (2.5-250 pmol) resulted in a dose-dependent blockade of immediate-early gene induction by cocaine (30 mgikg); 2) systemic administration of the kappa opioid receptor agonist spiradoline (0.5-10.0 mgikg) decreased cocaine-induced expression of c-fos and zif 268 mRNAs in striatum in a dose-dependent manner; 3) intrastriatal infusion of spiradoline (1-50 nmol) also suppressed immediate-early gene induction by cocaine, demonstrating that kappa opioid receptors located in the striatum mediate such an effect; and 4) systemic and intrastriatal administration of spiradoline also affected immediate-early gene expression in cortex. These results demonstrate that, in striatum, immediate-early gene induction by cocaine is a D l dopamine receptor-mediated process that is inhibited by activation of kappa opioid receptors. Therefore, these findings suggest that the striatal dynorphin opioid system acts directly and/or indirectly to inhibit dopamine input to striatonigral neurons through kappa opioid receptor-mediated processes in the striatum.

Cocaine binges differentially alter striatal preprodynorphin and zif/268 mRNAs

Molecular Brain Research, 1995

Several studies have demonstrated that cocaine increases preprodynorphin, c-los, and zif/268 mRNAs in rat dorsal striatum. Multiple, closely spaced exposures to cocaine appear to elicit the greatest increases in dynorphin. However, the response of preproenkephalin, c-los and zif/268 mRNAs to such a dosing regimen is unknown. Therefore, we used a 'binge' paradigm to evaluate changes in mRNA for preprodynorphin, preproenkephalin, c-los and zif/268. Male Wistar rats received three hourly i.p. injections of saline or 10 or 20 mg/kg cocaine for 1, 5, or 10 days. Although cocaine-induced locomotor and stereotypical behaviors were significantly increased as compared to saline on days 1, 5 and 10, these behaviors were significantly less on day 10 than on days 1 and 5. One hour after the last injection on days 1, 5, or 10, the rats were anesthetized and decapitated for quantitative in situ hybridization histoehemistry. C-los mRNA was undetectable in all treatment groups whereas zif/268 mRNA in the dorsal striatum was increased in a dose-dependent manner (20 mg/kg > 10 mg/kg) but the intensity of hybridization signal decreased over time (1 day >> 5 days > 10 days) as compared to that in saline-treated controls. In contrast, 10 mg/kg cocaine binges caused an increase in preprodynorphin, but not preproenkephalin, mRNA in the dorsal, but not ventral, striatum in a time-dependent manner (day 10 >> day 5 > day 1) whereas 20 mg/kg cocaine binges caused an increase in striatal preprodynorphin that was greater on day 1 and day 5 than on day 10. These data indicate that (1) c-fos, zif/268 and preprodynorphin mRNAs are differentially regulated in dorsal striatum, (2) behavioral tolerance results from chronic binges with 10 and 20 mg/kg cocaine and (3) the preprodynorphin genomic response exhibits tolerance to chronic high dose, but not low dose, cocaine binges.

Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context

European Journal of Neuroscience, 2003

Psychostimulants alter gene expression in projection neurons of the striatum, and such neuroplasticity is implicated in drug addiction and dependence. Evidence indicates that excitatory inputs from the cortex and thalamus are critical for these molecular changes. In the present study, we determined the topography of cocaine-induced changes in gene expression in the rat striatum and investigated whether these molecular alterations are associated with particular cortical inputs. Acute induction of c-fos (by 25 mg/kg of cocaine), and the c-fos response and dynorphin expression after repeated cocaine treatment (25 mg/kg, 4 days) were assessed as examples for short-term and longer-term molecular changes, respectively. In addition, we examined whether these molecular effects were in¯uenced by the behaviour performed during cocaine action (running-wheel training vs. open ®eld). Our results demonstrate that the overall topography of cocaine-induced gene regulation in the striatum is remarkably stable. Both acute and longer-term molecular changes were maximal in caudal dorsal striatal sectors that receive convergent inputs from the medial agranular and the sensorimotor cortex. In contrast, relatively minor or no effects were found in rostral and ventral striatal sectors. However, running-wheel training under the in¯uence of cocaine enhanced the c-fos response to a subsequent cocaine challenge selectively in parts of the caudal sensorimotor striatum. These results indicate that cocaine produces molecular adaptations preferentially in cortico-basal ganglia circuits through the sensorimotor striatum, and that some of these neuronal changes are in¯uenced by the behaviour performed during drug exposure.

Molecular alterations in the neostriatum of human cocaine addicts

Synapse, 1993

Molecular changes in the neostriatum of human subjects who died with a history of cocaine abuse were revealed in discrete cell populations by means of the techniques of in situ hybridization histochemistry and in vitro receptor binding and autoradiography. Cocaine subjects had a history of repeated cocaine use and had cocaine andlor cocaine metabolites on board at the time of death. These subjects were compared to control subjects that had both a negative history and toxicology of cocaine use. Selective alterations in mRNA levels of striatal neuropeptides were detected in cocaine subjects compared to control subjects, especially for the opioid peptides. Marked reductions in the levels of enkephalin mRNA and p opiate receptor binding were found in the caudate and putamen, concomitant with elevations in levels of dynorphin mRNA and K opiate receptor binding in the putamen and caudate, respectively. Dopamine uptake site binding was reduced in the caudate and putamen of cocaine subjects. The greater magnitude of changes in the dorsolateral striatum (caudate and putamen) a s opposed to the ventromedial striatum (nucleus accumbens) suggests that cocaine abuse preferentially alters the biosynthetic activity of striatal systems associated with sensorimotor functioning. Additionally, a n imbalance in the activity of the two major striatal output pathways in cocaine users is implicated because peptide mRNA levels were reduced in enkephalinergic striatopallidal neurons and increased in dynorphinergic striatonigral neurons. Another imbalance, that of reductions of transmitter mRNA and receptor expression associated with euphoria (enkephalin and p, opiate receptors), together with elevations in mRNAs of transmitter systems associated with dysphoria (dynorphin and K opiate receptors), suggests a model of dysphoria and craving in the human cocaine addict brain.

Cocaine effects on gene regulation in the striatum and behavior

NeuroReport, 2000

Central effects of psychostimulants such as cocaine are predominantly mediated by dopamine receptors. We have used mice with a targeted deletion of the D3 dopamine receptor subtype to investigate the role of this receptor in the regulation of gene expression in striatal neurons and behavior by acute and repeated treatment with cocaine (25 mg/kg). In mice lacking D3 receptors, acute administration of cocaine has more pronounced stimulatory effects on c-fos and dynorphin expression in the dorsal and ventral striatum. The behavioral response to cocaine is also increased in these mice. These ®ndings indicate that the D3 receptor plays an inhibitory role in the action of cocaine on behavior and gene regulation in the striatum. NeuroReport 11:2395±2399 & 2000 Lippincott Williams & Wilkins.

The rate of intravenous cocaine administration alters c-fos mRNA expression and the temporal dynamics of dopamine, but not glutamate, overflow in the striatum

Brain Research, 2008

The rapid entry of drugs into the brain is thought to increase the propensity for addiction. The mechanisms that underlie this effect are not known, but variation in the rate of intravenous cocaine delivery does influence its ability to induce immediate early gene expression (IEG) in the striatum, and to produce psychomotor sensitization. Both IEG induction and psychomotor sensitization are dependent upon dopamine and glutamate neurotransmission within the striatum. We hypothesized, therefore, that varying the rate of intravenous cocaine delivery might influence dopamine and/or glutamate overflow in the striatum. To test this we used microdialysis coupled to on-line capillary electrophoresis and laser-induced fluorescence, which allows for very rapid sampling, to compare the effects of a rapid (5 sec) versus a slow (100 sec) intravenous cocaine infusion on extracellular dopamine and glutamate levels in the striatum of freely moving rats. An acute injection of cocaine had no effect on extracellular glutamate, at either rate tested. In contrast, although peak levels of dopamine were unaffected by infusion rate, dopamine levels increased more rapidly when cocaine was administered over 5 versus 100 seconds. Moreover, c-fos mRNA expression in the region of the striatum sampled was greater when cocaine was administered rapidly than when given slowly. These data suggest that small differences in the temporal dynamics of dopamine neurotransmission may have a large effect on the subsequent induction of intracellular signalling cascades that lead to immediate early gene expression, and in this way influence the ability of cocaine to produce longlasting changes in brain and behaviour.