Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels (original) (raw)
Related papers
Analytical and Bioanalytical Chemistry, 2007
A magnetocontrolled immunosensing strategy based on flow-injection electrochemical impedance spectroscopy (EIS) was developed for the determination of carcinoembryonic antigen (CEA) in human serum. The immunosensor was fabricated by immobilizing anti-CEA on epoxysilane-modified core-shell magnetic Fe 3 O 4 /SiO 2 nanoparticles. The detection principle is based on the difference between the resistances measured before and after the antigen-antibody interaction. The performance of the immunosensor and factors influencing this performance were also proposed. The resistance response depended linearly on the CEA concentration over the range 1.5-60 ng/ml, and the immunosensor gave a detection limit of 0.5 ng/ml (S/N=3). Coefficients of variance (CVs) of <9.8% were obtained for the intra-and interassay precisions. The method was successfully applied to the analysis of CEA in human serum. The recoveries obtained by spiking CEA standards into normal serum were 87-113%. The performance of the immunosensor was compared with a commercially available CEA ELISA. Satisfactory results were obtained according to a paired t-test method (t value < t critical at the 95% confidence level). Importantly, the proposed immobilization protocol could be further developed to immobilize other antigens or biocompounds.
Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers
ACS Nano, 2012
Bioanalytical methods have experienced unprecedented growth in recent years, driven in large part by the need for faster, more sensitive, more portable ("point of care") systems to detect protein biomarkers for clinical diagnosis. Electrochemical detection strategies, used in conjunction with immunosensors, offer advantages because they are fast, simple, and low cost. Recent developments in electrochemical immunosensors have significantly improved the sensitivity needed to detect low concentrations of biomarkers present in early stages of cancer. Moreover, the coupling of electrochemical devices with nanomaterials, such as gold nanoparticles, carbon nanotubes, magnetic particles, and quantum dots, offers multiplexing capability for simultaneous measurements of multiple cancer biomarkers. This review will discuss recent advances in the development of electrochemical immunosensors for the next generation of cancer diagnostics, with an emphasis on opportunities for further improvement in cancer diagnostics and treatment monitoring. Details will be given for strategies to increase sensitivity through multilabel amplification, coupled with high densities of capture molecules on sensor surfaces. Such sensors are capable of detecting a wide range of protein quantities, from nanogram to femtogram (depending on the protein biomarkers of interest), in a single sample.
Biosensors and Bioelectronics, 2012
Interests in using nanoporous metals for biosensing applications have been increasing. Herein, nanotubular mesoporous PdCu (NM-PdCu) alloy is used to fabricate a novel label-free electrochemical immunosensor for cancer biomarker carcinoembryonic antigen (CEA). It operates through physisorption of anti-CEA on NM-PdCu and the mixture of sulfonated graphene sheets (HSO 3-GS) and thionine (TH) functionalized glassy carbon electrode interface as the detection platform. In this study, chitosan (CS)-PdCu is bound very strongly to carcinoembryonic antibody (anti-CEA), because of the good electron conductivity, high surface area, and good biocompatibility. CS-PdCu is immobilized on electrodes by electrostatic interactions between the negatively charged sulfo group of HSO 3-GS and the abundant positively charged amino groups of chitosan. TH acts as the redox probe. Under the optimized conditions, the electrochemical immunosensor exhibits a wide working range from 0.01 to 12 ng/mL with a low detection limit of 4.86 pg/mL. The accuracy, reproducibility, and stability of the immunosensor are acceptable. The assay is evaluated for real serum samples, receiving satisfactory results. The nanoporous metal materials-based immunoassay provides a promising approach in clinical application and thus represents a versatile detection method.
Analytical chemistry, 2016
Bio-related single molecular detection (SMD) was usually achieved by imaging the redox fluorescent labels and then figuring them out one by one. Herein, we demonstrated that the capping agents, i.e. mercaptopropionic acid and sodium hexametaphosphate, can facilitate the electrochemical involved hole (or electron) injecting process and improve stability of the dual-stabilizers-capped CdSe nanocrystals (NCs), so that the CdSe NCs could be electrochemically and repeatly inspired to excited states by giving off electrochemiluminescence (ECL) in a cyclic pattern. With the CdSe NCs as ECL label and carcinoembryonic antigen (CEA) as target molecule, a convenient single molecular immunoassay was proposed by simply detecting the ECL intensity of the dual-stabilizers-capped CdSe NCs in a sandwich-typed immune-complex. The limit of detection is 0.1 fg/mL at S/N = 3, which is corresponded to about 6~8 CEA molecules in 20 μL serum sample. Importantly, ECL spectra of both CdSe NCs and its conjuga...
Electrochemical Coding for Multiplexed Immunoassays of Proteins
Analytical Chemistry, 2004
An electrochemical immunoassay protocol for the simultaneous measurements of proteins, based on the use of different inorganic nanocrystal tracers is described. The multiprotein electrical detection capability is coupled to the amplification feature of electrochemical stripping transduction (to yield fmol detection limits) and with an efficient magnetic separation (to minimize nonspecific adsorption effects). The multianalyte electrical sandwich immunoassay involves a dual binding event, based on antibodies linked to the nanocrystal tags and magnetic beads. Carbamate linkage is used for conjugating the hydroxyl-terminated nanocrystals with the secondary antibodies. Each biorecognition event yields a distinct voltammetric peak, whose position and size reflects the identity and level, respectively, of the corresponding antigen. The concept is demonstrated for a simultaneous immunoassay of 2 -microglobulin, IgG, bovine serum albumin, and C-reactive protein in connection with ZnS, CdS, PbS, and CuS colloidal crystals, respectively. These nanocrystal labels exhibit similar sensitivity. Such electrochemical coding could be readily multiplexed and scaled up in multiwell microtiter plates to allow simultaneous parallel detection of numerous proteins or samples and is expected to open new opportunities for protein diagnostics and biosecurity.
The Analyst, 2015
We report on a novel strategy for DNA aptamer immobilization to develop sensitive electrochemical detection of a protein biomarker, with prostate specific antigen (PSA) as a case biomarker. Thiolated single-stranded DNA (ssDNA) was co-immobilized with 3-mercapto-1-propanol on gold electrodes, and used as a scaffold for DNA aptamer attachment through hybridization of the aptamer overhang (so-called "DNA-directed immobilization aptamer sensors", DDIAS). In the approach, the complementary DNA aptamer against PSA was assembled by the probe ssDNA onto the electrode to detect PSA; or the probe ssDNA directly hybridized with a complementary DNA aptamer/PSA complex following their pre-incubation in solution, so-called 'on-chip' and 'in-solution' methods, respectively. A double stranded DNA intercalator with a ferrocenyl (Fc) redox marker was synthesized to evaluate the feasibility of the strategy. The results demonstrate that the 'in-solution' method offers...
Analytical Chemistry, 2009
An ultrasensitive electrochemical method for determination of DNA is developed based on counting of single magnetic nanobeads (MNBs) corresponding to single DNA sequences combined with a double amplification (DNA amplification and enzyme amplification). In this method, target DNA (t-DNA) is captured on a streptavidin-coated substrate via biotinylated capture DNA. Then, MNBs functionalized with first-probe DNAs (p1-DNA-MNBs) are conjugated to t-DNA sequences with a ratio of 1:1. Subsequently, the p1-DNA-MNBs are released from the substrate via dehybridization. The released p1-DNA-MNBs are labeled with alkaline phosphatase (AP) using biotinylated second-probe DNAs (p2-DNAs) and streptavidin-AP conjugates. The resultant AP-p2-DNA-p1-DNA-MNBs with enzyme substrate disodium phenyl phosphate (DPP) are continuously introduced through a capillary as the microsampler and microreactor at 40°C. AP on the AP-p2-DNA-p1-DNA-MNBs converts a huge number of DPP into its product phenol, and phenol zones are produced around each moving AP-p2-DNA-p1-DNA-MNB. The phenol zones are continuously delivered to the capillary outlet and detected by a carbon fiber disk bundle electrode at 1.05 V. An elution curve with peaks is obtained. Each peak is corresponding to a phenol zone relative to single t-DNA sequence. The peaks on the elution curve are counted for quantification. The number of the peaks is proportional to the concentration of t-DNA in a range of 5.0 × 10 -16 to 1.0 × 10 -13 mol/L.
Microchimica Acta
The early diagnosis of major diseases such as cancer is typically a major issue for humanity. Human α-fetoprotein (AFP) as a sialylated glycoprotein is of approximately 68 kD molecular weight and is considered to be a key biomarker, and an increase in its level indicates the presence of liver, testicular, or gastric cancer. In this study, an electrochemical AFP immunosensor based on Fe 3 O 4 NPs@covalent organic framework decorated gold nanoparticles (Fe 3 O 4 NPs@COF/AuNPs) for the electrode platform and double-coated magnetic nanoparticles (MNPs) based on SiO 2 @TiO 2 (MNPs@SiO 2 @TiO 2) nanocomposites for the signal amplification was fabricated. The immobilization of anti-AFP capture antibody was successfully performed on Fe 3 O 4 NPs@COF/AuNPs modified electrode surface by amino-gold affinity, while the conjugation of anti-AFP secondary antibody on MNPs@SiO 2 @TiO 2 was achieved by the electrostatic/ionic interactions. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) analysis, cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) techniques were used to characterize the nanostructures in terms of physical and electrochemical features. The limit of detection (LOD) was 3.30 fg mL −1. The findings revealed that the proposed electrochemical AFP immunosensor can be effectively used to diagnose cancer.