Cluster galaxies in XMMU J2235-2557: galaxy population properties in most massive environments at z ~ 1.4 (original) (raw)
Related papers
Astrophysical Journal, 2005
We combine HST/ACS imaging from the GEMS survey with redshifts and rest-frame quantities from COMBO-17 to study the evolution of morphologically early-type galaxies with red colors since z=1. We use a new large sample of 728 galaxies with centrally-concentrated radial profiles (Sersic n>2.5) and rest-frame U-V colors on the red sequence. By appropriate comparison with the local relations from SDSS, we find that the luminosity-size (L-R) and stellar mass-size (M-R) relations evolve in a manner that is consistent with the passive aging of ancient stars. By itself, this result is consistent with a completely passive evolution of the red early-type galaxy population. If instead, as demonstrated by a number of recent surveys, the early-type galaxy population builds up in mass by a factor of 2 since z=1, our results imply that new additions to the early-type galaxy population follow similar L-R and M-R correlations, compared to the older subset of early-type galaxies. Adding early-type galaxies to the red sequence through disk fading appears to be consistent with the data. Through comparison with models, the role of dissipationless merging is limited to <1 major merger on average since z=1 for the most massive galaxies. Predictions from models of gas-rich mergers are not yet mature enough to allow a detailed comparison to our observations. We find tentative evidence that the amount of luminosity evolution depends on galaxy stellar mass, such that the least massive galaxies show stronger luminosity evolution compared to more massive early types. This could reflect a different origin of low-mass early-type galaxies and/or younger stellar populations; the present data is insufficient to discriminate between these possibilities. (abridged)
The 2dF-SDSS LRG and QSO Survey: evolution of the clustering of luminous red galaxies since z = 0.6
Monthly Notices of The Royal Astronomical Society, 2008
We present an analysis of the small-to-intermediate scale clustering of samples of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey and the 2dF-SDSS LRG and QSO (2SLAQ) survey carefully matched to have the same rest-frame colours and luminosity. We study the spatial two-point auto-correlation function in both redshift-space and real-space of a combined sample of over 10,000 LRGs, which represent the most massive galaxies in the universe with stellar masses > 10^11 h^-1 M_sun and space densities 10^-4 h^-3 Mpc^-3. We find no significant evolution in the amplitude r_0 of the correlation function with redshift, but do see a slight decrease in the slope with increasing redshift over 0.19 < z < 0.55 and scales of 0.32 < r < 32 h^-1 Mpc. We compare our measurements with the predicted evolution of dark matter clustering and use the halo model to interpret our results. We find that our clustering measurements are inconsistent (>99.9% significance) with a passive model whereby the LRGs do not merge with one another; a model with a merger rate of 7.5 +/- 2.3% from z = 0.55 to z = 0.19 (i.e. an average rate of 2.4% Gyr^-1) provides a better fit to our observations. Our clustering and number density measurements are consistent with the hypothesis that the merged LRGs were originally central galaxies in different haloes which, following the merger of these haloes, merged to create a single Brightest Cluster Galaxy. In addition, we show that the small-scale clustering signal constrains the scatter in halo merger histories. When combined with measurements of the luminosity function, our results suggest that this scatter is sub-Poisson. While this is a generic prediction of hierarchical models, it has not been tested before.
Astrophysical Journal, 2004
We recently identified a substantial population of galaxies at z>2 with red rest-frame optical colors. These distant red galaxies (DRGs) are efficiently selected by the simple observed color criterion J-K>2.3. In this paper we present NIR spectroscopy with Keck/NIRSPEC of six DRGs at 2.4<z<3.2. We detect continuum emission and emission lines of all observed galaxies. Equivalent widths of H alpha are 20-30 Ang, smaller than measured for LBGs and nearby LIRGs, and comparable to normal nearby galaxies. The modest equivalent widths imply that the galaxies either have a decreasing star formation rate, or that they are very dusty. Fitting both the photometry and the H alpha lines, we find continuum extinction A_V=1-2 mag, ages 1-2.5 Gyr, star formation rates 200-400 solar masses/yr, and stellar masses 1-5x10^11 solar masses for models with constant star formation rates. From [NII]/H alpha ratios we infer that the metallicities are high, 1-1.5 x Solar. For four galaxies we can determine line widths from the optical emission lines. The widths are high, ranging from 130-240 km/s, and by combining data for LBGs and DRGs we find significant correlations between linewidth and restframe U-V color, and between linewidth and stellar mass. The latter correlation has a similar slope and offset as the ``baryonic Tully-Fisher relation'' for nearby galaxies. The median dynamical mass is ~2x10^11 solar masses, supporting the high stellar masses inferred from the photometry. We find that the median M/L_V ~ 0.8, a factor of ~5 higher than measured for LBGs. We infer from our small sample that DRGs are dustier, more metal rich, more massive, and have higher ages than z=3 LBGs of the same rest-frame V-band luminosity. Their high M/L ratios imply that they contribute significantly to the stellar mass density at z~2.5. [ABRIDGED]