Intercomparison of radiation measurements on STS-63 (original) (raw)
Related papers
A study of the radiation environment on board the Space Shuttle flight STS-57
Radiation Measurements, 1995
A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on Space Shuttle flight STS-57 was conducted. The Shuttle flew in a nearly circular orbit of 28.5" inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTDs) and thermoluminescent detectors (TLDs), and Russian nuclear emulsions, PNTDs and TLDs. All the detector systems were shielded by the same Shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/nm and 200 keV/pm. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than the TLDs, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLDs to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.
Radiation survey in the International Space Station
Journal of Space Weather and Space Climate, 2015
The project ALTEA-shield/survey is part of an European Space Agency (ESA)-ILSRA (International Life Science Research Announcement) program and provides a detailed study of the International Space Station (ISS) (USLab and partly Columbus) radiation environment. The experiment spans over 2 years, from September 20, 2010 to September 30, 2012, for a total of about 1.5 years of effective measurements. The ALTEA detector system measures all heavy ions above helium and, to a limited extent, hydrogen and helium (respectively, in 25 Mev-45 MeV and 25 MeV/n-250 MeV/n energy windows) while tracking every individual particle. It measures independently the radiation along the three ISS coordinate axes. The data presented consist of flux, dose, and dose equivalent over the time of investigation, at the different surveyed locations. Data are selected from the different geographic regions (low and high latitudes and South Atlantic Anomaly, SAA). Even with a limited acceptance window for the proton contribution, the flux/dose/dose equivalent results as well as the radiation spectra provide information on how the radiation risks change in the different surveyed sites. The large changes in radiation environment found among the measured sites, due to the different shield/mass distribution, require a detailed Computer-Aided Design (CAD) model to be used together with these measurements for the validation of radiation models in space habitats. Altitude also affects measured radiation, especially in the SAA. In the period of measurements, the altitude (averaged over each minute) ranged from 339 km to 447 km. Measurements show the significant shielding effect of the ISS truss, responsible for a consistent amount of reduction in dose equivalent (and so in radiation quality). Measured Galactic Cosmic Ray (GCR) dose rates at high latitude range from 0.354 ± 0.002 nGy/s to 0.770 ± 0.006 nGy/s while dose equivalent from 1.21 ± 0.04 nSv/s to 6.05 ± 0.09 nSv/s. The radiation variation over the SAA is studied. Even with the reduced proton sensitivity, the high day-by-day variability, as well as the strong altitude dependence is clearly observed. The ability of filtering out this contribution from the data is presented as a tool to construct a radiation data set well mimicking deep space radiation, useful for model validations and improvements.
Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport
Applied Radiation and Isotopes, 2008
When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range.
Cosmic Radiation Dose in the Aircraft
When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range.
Radiation dosimetry for high LET particles in low Earth orbit
Acta Astronautica, 2008
Research indicates that the impact to human tissues from radiation exposure is strongly related to the LET (linear energy transfer) of the particles and particles with high LET (5 KeV/ m water) dominate the damage. High LET radiation in LEO (low Earth orbit) is composed mainly of galactic cosmic rays (GCR), solar energetic particles, particles trapped in the SAA (South Atlantic Anomaly), and albedo neutrons and protons scattered from the Earth's atmosphere. So far the active personal dosimeters are not available and the best passive personal dosimeters currently applied to the radiation assessment for astronauts are CR-39 detectors (for the high LET part) in combination with thermoluminescence detectors (TLDs) or optically stimulated luminescence detectors) (OSLDs) (for the low LET part). LET spectra for radiation in LEO were determined with CR-39. This paper introduces the operational principles for CR-39 detectors, describes the method of LET spectrum using CR-39 and presents the results measured with CR-39 and TEPC (tissue equivalent proportional counter) for space mission ISS-Expedition 2, STS-108, STS-112, ISS-7S, STS-114 and STS-121.
Radiation measured with different dosimeters during STS-121 space mission
Acta Astronautica, 2009
Radiation impact to astronauts depends on the particles' linear energy transfer (LET) and is dominated by high LET radiation. Radiation risk experienced by astronauts can be determined with the radiation LET spectrum measured and the risk response function obtained from radiobiology. Systematical measurement of the space radiation is an important part for the research on the impact of radiation to astronauts and to make the radiation ALARA (as low as reasonably achievable). For NASA space missions at low Earth orbit (LEO), the active dosimeter used for all LET is the tissue equivalent proportional counter (TEPC) and the passive dosimeters used for the astronauts and for the monitored areas are the combination of CR-39 plastic nuclear track detectors (PNTDs) for high LET and thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeter (OSLDs) for low LET. TEPC, CR-39 PNTDs and TLDs/OSLDs were used to measure the radiation during STS-121 space mission. LET spectra and radiation quantities were obtained with active and passive dosimeters. This paper will introduce the physical principles for TEPC and CR-39 detectors, the LET spectrum method for radiation measurement using CR-39 detectors and TEPC, and will present and compare the radiation LET spectra and quantities measured with TEPC, CR-39 PNTDs and TLDs/OSLDs.
Results of dosimetric measurements in space missions
Advances in Space Research, 1998
Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disinte~ations and fast neutron fluence rates were determined of each exposure. The dose equivalent received by the Payload specialists (PSs) were calculated from the measurements, they range from 190 pSv d" to 770 pSv d-'. Finally, a preliminary investigation of results from a particle telescope of two silicon detectors, first used in the last BIORACK mission on STS 76, is reported.
New results on radiation effects on human health
Acta Geophysica, 2009
A b s t r a c t Humans are exposed to ionizing radiation all the time, and it is known that it can induce a variety of harmful biological effects. Consequently, it is necessary to quantitatively assess the level of exposure to this radiation as the basis for estimating risks due to ionization radiation. During the Work Package 2400 of the COST-724/WG-2 action, a number of spacecraft and aircraft experiments have been performed with both active and passive detectors. A large data base has been created.