2014 COMT mice humans Papaleo Cerebral Cor (original) (raw)
Related papers
No association of COMT (Val158Met) genotype with brain structure differences between men and women
PloS one, 2012
We examined the effect of the catechol-O-methyltransferase (COMT) Val158Met polymorphism (rs4680), on brain structure in a subset (N = 82) of general population members of the Northern Finland 1966 Birth Cohort, selected through a randomization procedure, aged 33-35. Optimised voxel-based morphometry was used to produce grey matter maps from each subject's high resolution T1 weighted brain magnetic resonance images, which were subsequently entered into a general linear model with COMT genotype as defined by Met allele loading, gender and genotype by gender interaction as independent variables. Additional analyses were carried out on grey matter volumes within the dorsal lateral pre-frontal cortex (DLPFC) to examine effects on overall DLPFC volume and also using the DLPFC as a mask for voxelwise analyses, as this is an area previously reported as associated with Met allele loading. We failed to find any statistically significant association with grey matter volume and Met allele ...
Effects of sex and COMT genotype on environmentally modulated cognitive control in mice
Cognitive functioning differs between males and females, likely in part related to genetic dimorphisms. An example of a common genetic variation reported to have sexually dimorphic effects on cognition and temperament in humans is the Val/Met polymorphism in catechol-O-methyltransferase (COMT). We tested male and female wild-type mice ( +/+ ) and their COMT knockout littermates ( +/− and −/− ) in the five-choice serial reaction time task (5CSRTT) to investigate the effects of sex, COMT genotype, and their interactions with environmental manipulations of cognitive functions such as attention, impulsivity, compulsivity, motivation, and rule-reversal learning. No sex-or COMT-dependent differences were present in the basic acquisition of the five-choice serial reaction time task. In contrast, specific environmental manipulations revealed a variety of sex-and COMT-dependent effects. Following an experimental change to trigger impulsive responding, the sexes showed similar increases in impulsiveness, but males eventually habituated whereas females did not. Moreover, COMT knockout mice were more impulsive compared with wild-type littermates. Manipulations involving mild stress adversely affected cognitive performance in males, and particularly COMT knockout males, but not in females. In contrast, following amphetamine treatment, subtle sex by genotype and sex by treatment interactions emerged primarily limited to compulsive behavior. After repeated testing, female mice showed improved performance, working harder and eventually outperforming males. Finally, removing the food-restriction condition enhanced sex and COMT differences, revealing that overall, females outperform males and COMT knockout males outperform their wild-type littermates. These findings illuminate complex sex-and COMT-related effects and their interactions with environmental factors to influence specific executive cognitive domains. gender | operant behavior | food ad libitum | psychiatric disorders I nvestigation of the interplay of sex, gene modifications, and environmental factors may provide insight into vulnerabilities that give rise to neurobehavioral disorders. The catechol-O-methyltransferase (COMT) gene constitutes an appealing candidate in the study of gene-sex-environment interactions, for a number of reasons, including that COMT modulates dopamine in the prefrontal cortex (PFC) (1-4); PFC function varies between the sexes (5, 6); COMT exhibits sexually dimorphic associations in humans (7); and COMT is regulated by estrogen (8). Moreover, PFC dopamine transmission is involved in multiple spheres of human behavior, thought, and emotion (9). Consistent with this, COMT genetic variation leads to pleiotropic behavioral effects in humans as well as in mice (10-16). In particular, remarkable similarities have been demonstrated between mice and humans with respect to the effects of COMT genetic variations on aspects of cognition, emotional arousal, pain sensitivity, and amphetamine responsivity .
COMT Val158Met Polymorphism Exerts Sex-Dependent Effects on fMRI Measures of Brain Function
Frontiers in human neuroscience, 2017
Evidence suggests that dopamine levels in the prefrontal cortex (PFC) modulate executive functions. A key regulator of PFC dopamine is catechol-O-methyltransferase (COMT). The activity level of the COMT enzyme are influenced by sex and the Val158Met polymorphism (rs4680) of the COMT gene, with male sex and Val alleles both being associated with higher bulk enzyme activity, and presumably lower PFC dopamine. COMT genotype has not only been associated with individual differences in frontal dopamine-mediated behaviors, but also with variations in neuroimaging measures of brain activity and functional connectivity. In this study, we investigated whether COMT genotype predicts individual differences in neural activity and connectivity, and whether such effects are sex-dependent. We tested 93 healthy adults (48 females), genotyped for the Val158Met polymorphism, in a delay discounting task and at rest during fMRI. Delay discounting behavior was predicted by an interaction of COMT genotype...
Molecular psychiatry, 2024
Cognitive dysfunctions are core-enduring symptoms of schizophrenia, with important sex-related differences. Genetic variants of the DTBPN1 gene associated with reduced dysbindin-1 protein (Dys) expression negatively impact cognitive functions in schizophrenia through a functional epistatic interaction with Catechol-O-methyltransferase (COMT). Dys is involved in the trafficking of dopaminergic receptors, crucial for prefrontal cortex (PFC) signaling regulation. Moreover, dopamine signaling is modulated by estrogens via inhibition of COMT expression. We hypothesized a sex dimorphism in Dys-related cognitive functions dependent on COMT and estrogen levels. Our multidisciplinary approach combined behavioral-molecular findings on genetically modified mice, human postmortem Dys expression data, and in vivo fMRI during a working memory task performance. We found cognitive impairments in male mice related to genetic variants characterized by reduced Dys protein expression (p Bonferroni = 0.0001), as well as in male humans through a COMT/Dys functional epistatic interaction involving PFC brain activity during working memory (t(23) = −3.21; p FDR = 0.004). Dorsolateral PFC activity was associated with lower working memory performance in males only (p = 0.04). Also, male humans showed decreased Dys expression in dorsolateral PFC during adulthood (p FDR = 0.05). Female Dys mice showed preserved cognitive performances with deficits only with a lack of estrogen tested in an ovariectomy model (p Bonferroni = 0.0001), suggesting that genetic variants reducing Dys protein expression could probably become functional in females when the protective effect of estrogens is attenuated, i.e., during menopause. Overall, our results show the differential impact of functional variants of the DTBPN1 gene interacting with COMT on cognitive functions across sexes in mice and humans, underlying the importance of considering sex as a target for patient stratification and precision medicine in schizophrenia.
Genetics of sex differences in brain and behavior Ngun 2011
Biological differences between men and women contribute to many sex-specific illnesses and disorders. Historically, it was argued that such differences were largely, if not exclusively, due to gonadal hormone secretions. However, emerging research has shown that some differences are mediated by mechanisms other than the action of these hormone secretions and in particular by products of genes located on the X and Y chromosomes, which we refer to as direct genetic effects. This paper reviews the evidence for direct genetic effects in behavioral and brain sex differences. We highlight the 'four core genotypes' model and sex differences in the midbrain dopaminergic system, specifically focusing on the role of Sry. We also discuss novel research being done on unique populations including people attracted to the same sex and people with a cross-gender identity. As science continues to advance our understanding of biological sex differences, a new field is emerging that is aimed at better addressing the needs of both sexes: gender-based biology and medicine. Ultimately, the study of the biological basis for sex differences will improve healthcare for both men and women.
2010
Cortical thickness has been proposed as a new promising brain imaging endophenotype in elucidating the nature of gene-brain relationships. Here, we define the morphological impact of the Val 158 Met polymorphism in the catechol-O-methyltransferase (COMT) gene on human brain anatomy. One hundred and forty-nine adult healthy subjects (mean age: 40.7؎16.1; ranging from 19 to 76 years) were genotyped (38 in the homozygous Val 158 group; 80 in the Val 158 Met group; 31 in the homozygous Met 158 group) for the COMT polymorphism and underwent morphological examination. Surface-based analysis of the cortical mantle showed that the COMT genotype was associated with structural differences in the right superior temporal sulcus and inferior prefrontal sulcus, where the individuals carrying the Met 158 allele had a thicker cortex with respect to their Val 158 counterparts. Our study extends the previous evidence found on pediatric population to the adult population, demonstrating that the higher synaptic dopamine levels associated with the presence of the Met 158 allele may influence neuronal architecture in brain structures important for executive and emotional processing.
Examining Sex-Differentiated Genetic Effects Across Neuropsychiatric and Behavioral Traits
Biological Psychiatry, 2021
BACKGROUND: The origin of sex differences in prevalence and presentation of neuropsychiatric and behavioral traits is largely unknown. Given established genetic contributions and correlations, we tested for a sex-differentiated genetic architecture within and between traits. METHODS: Using European ancestry genome-wide association summary statistics for 20 neuropsychiatric and behavioral traits, we tested for sex differences in single nucleotide polymorphism (SNP)-based heritability and genetic correlation (r g , 1). For each trait, we computed per-SNP z scores from sex-stratified regression coefficients and identified genes with sex-differentiated effects using a gene-based approach. We calculated correlation coefficients between z scores to test for shared sex-differentiated effects. Finally, we tested for sex differences in across-trait genetic correlations. RESULTS: We observed no consistent sex differences in SNP-based heritability. Between-sex, within-trait genetic correlations were high, although ,1 for educational attainment and risk-taking behavior. We identified 4 genes with significant sex-differentiated effects across 3 traits. Several trait pairs shared sex-differentiated effects. The top genes with sex-differentiated effects were enriched for multiple gene sets, including neuron-and synapserelated sets. Most between-trait genetic correlation estimates were not significantly different between sexes, with exceptions (educational attainment and risk-taking behavior). CONCLUSIONS: Sex differences in the common autosomal genetic architecture of neuropsychiatric and behavioral phenotypes are small and polygenic and unlikely to fully account for observed sex-differentiated attributes. Larger sample sizes are needed to identify sex-differentiated effects for most traits. For well-powered studies, we identified genes with sex-differentiated effects that were enriched for neuron-related and other biological functions. This work motivates further investigation of genetic and environmental influences on sex differences.
The genetics of sex differences in brain and behavior
Frontiers in Neuroendocrinology, 2011
Biological differences between men and women contribute to many sex-specific illnesses and disorders. Historically, it was argued that such differences were largely, if not exclusively, due to gonadal hormone secretions. However, emerging research has shown that some differences are mediated by mechanisms other than the action of these hormone secretions and in particular by products of genes located on the X and Y chromosomes, which we refer to as direct genetic effects. This paper reviews the evidence for direct genetic effects in behavioral and brain sex differences. We highlight the 'four core genotypes' model and sex differences in the midbrain dopaminergic system, specifically focusing on the role of Sry. We also discuss novel research being done on unique populations including people attracted to the same sex and people with a cross-gender identity. As science continues to advance our understanding of biological sex differences, a new field is emerging that is aimed at better addressing the needs of both sexes: gender-based biology and medicine. Ultimately, the study of the biological basis for sex differences will improve healthcare for both men and women.
Impact of complex genetic variation in COMT on human brain function
Molecular …, 2006
Catechol-O-methyltransferase (COMT) has been shown to be critical for prefrontal dopamine flux, prefrontal cortex-dependent cognition and activation. Several potentially functional variants in the gene have been identified, but considerable controversy exists regarding the contribution of individual alleles and haplotypes to risk for schizophrenia, partly because clinical phenotypes are ill-defined and preclinical studies are limited by lack of adequate models. Here, we propose a neuroimaging approach to overcome these limitations by characterizing the functional impact of ambiguous haplotypes on a neural system-level intermediate phenotype in humans. Studying 126 healthy control subjects during a workingmemory paradigm, we find that a previously described risk variant in a functional Val158Met (rs4680) polymorphism interacts with a P2 promoter region SNP (rs2097603) and an SNP in the 3 0 region (rs165599) in predicting inefficient prefrontal working memory response. We report evidence that the nonlinear response of prefrontal neurons to dopaminergic stimulation is a neural mechanism underlying these nonadditive genetic effects. This work provides an in vivo approach to functional validation in brain of the biological impact of complex genetic variations within a gene that may be critical for its clinical association.