How do people learn from negative evidence? Non-monotonic generalizations and sampling assumptions in inductive reasoning (original) (raw)
Abstract
A robust finding in category-based induction tasks is for positive observations to raise the willingness to generalize to other categories while negative observations lower the willingness to generalize. This pattern is referred to as monotonic generalization. Across three experiments we find systematic non-monotonicity effects, in which negative observations raise the willingness to generalize. Experiments 1 and 2 show that this effect emerges in hierarchically structured domains when a negative observation from a different category is added to a positive observation. They also demonstrate that this is related to a specific kind of shift in the reasoner's hypothesis space. Experiment 3 shows that the effect depends on the assumptions that the reasoner makes about how inductive arguments are constructed. Non-monotonic reasoning occurs when people believe the facts were put together by a helpful communicator, but monotonicity is restored when they believe the observations were sa...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (51)
- References
- Barner, D., Brooks, N., & Bale, A. (2011). Accessing the unsaid: The role of scalar alternatives in children's pragmatic inference. Cognition, 118 , 84-94.
- Bergen, L., Goodman, N., & Levy, R. (2012). That's what she (could have) said: How alternative utterances affect language use. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society (pp. 120-125). Austin, TX: Cognitive Science Society.
- Blok, S., Medin, D. L., & Osherson, D. (2007). Induction as conditional probability judgment. Memory & Cognition, 35 , 1353-1364.
- Chierchia, G., Crain, S., Guasti, M., Gualmini, A., & Meroni, L. (2001). The acquisition of dis- junction: Evidence for a grammatical view of scalar implicatures. In A. H. Do, L. Domnguez, & A. Johansen (Eds.), Proceedings of the 25th Annual Boston University Conference on Language Development , Vols 1 and 2. (pp. 157-168). Somerville, MA, US: Cascadilla Press.
- Coley, J. D., Hayes, B., Lawson, C., & Moloney, M. (2004). Knowledge, expectations, and inductive reasoning within conceptual hierarchies. Cognition, 90 , 217-253.
- Feeney, A., Coley, J. D., & Crisp, A. (2010). The relevanec framework for category-based induction: Evidence from garden path arguments. Journal of Experimental Psychology: Learning, Memory, & Cognition, 36 , 906-919.
- Fernbach, P. M. (2006). Sampling assumptions and the size principle in property induction. In R. S. adn N. Miyake (Ed.), Proceedings of the 28th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
- Frank, M. C., & Goodman, N. (2012). Predicting pragmatic reasoning in language games. Science, 6084 , 998.
- Good, I. J. (1960). The paradox of confirmation. The British Journal for the Philosophy of Science, 11 , 145-149.
- Goodman, N., & Stuhlmüller, A. (2013). Knowledge and implicature: Modeling language under- standing as social cognition. Topics in Cognitive Science, 5 , 173-184.
- Grice, H. P. (1989). Studies in the way of words. Cambridge, MA: Harvard University Press.
- Gweon, H., Tenenbaum, J. B., & Schulz, L. E. (2010). Infants consider both the sample and the sampling process in inductive generalization. Proceedings of the National Academy of Sciences, 107 , 9066-9071.
- Hayes, B. K., Heit, E., & Swendsen, H. (2010). Inductive reasoning. Wiley Interdisciplinary reviews: Cognitive Science, 1 , 278-291.
- Heit, E. (1998). A bayesian analysis of some forms of inductive reasoning. In M. Oaksford, & N. Chater (Eds.), Rational models of cognition (pp. 248-274). Oxford: Oxford University Press.
- Heit, E. (2000). Properties of inductive reasoning. Psychonomic Bulletin & Review , 7 , 569-592.
- Hempel, C. G. (1945). Studies in the logic of confirmation. Mind , 54 , 1-26.
- Van der Henst, J. B., Rossi, S., & Schroyens, W. (2002). When participants are not misled they are not so bad after all: A pragmatic analysis of a rule discovery task. In W. D. Gray, & C. D. Schunn (Eds.), Proceedings of the 24th Annual Conference of the Cognitive Science Society (pp. 902-908). Mahwah, NJ: Lawrence Erlbaum Associates.
- Heussen, D., Voorspoels, W., Verheyen, S., Storms, G., & Hampton, J. A. (2011). Raising argument strength using negative evidence: A constraint on models of induction. Memory & Cognition, 39 , 1496-1507.
- Hume, D. (1978 / 1739). A treatise of human nature. Oxford: Oxford University Press.
- Kalish, C., & Lawson, C. A. (2007). Negative evidence and inductive generalization. Thinking & Reasoning, 13 , 394-425.
- Klayman, J., & Ha, Y.-W. (1987). Confirmation, disconfirmation and information in hypothesis testing. Psychological Review , 94 , 201-228.
- Lawson, C. A., & Kalish, C. W. (2009). Sample selection and inductive generalization. Memory & Cognition, 37 , 596-607.
- Levinson, S. (1995). Interactional biases in human thinking. In E. Goody (Ed.), Social intelligence and interaction: Expressions and implications for the social bias in human intelligence (pp. 221- 260). Cambridge, England: Cambridge University Press.
- Lopez, A. (1995). The diversity principle in the testing of arguments. Memory & Cognition, 23 , 374-382.
- McKenzie, C. R. M., & Mikkelsen, L. A. (2007). A Bayesian view of covariation assessment. Cognitive Psychology, 54 , 33-61.
- Medin, D., Coley, J. D., Storms, G., & Hayes, B. K. (2003). A relevance theory of induction. Psychonomic Bulletin & Review , 10 , 517 -532.
- Medin, D., Goldstone, R., & Gentner, D. (1993). Respects for similarity. Psychological Review , 100 , 254-278.
- Morey, R. D., & Rouder, J. N. (2014). BayesFactor: Computation of Bayes factors for common designs.. URL: http://CRAN.R-project.org/package=BayesFactor r package version 0.9.7.
- Navarro, D. J., Dry, M. J., & Lee, M. D. (2012). Sampling assumptions in inductive generalization. Cognitive Science, 36 , 187-223.
- Navarro, D. J., & Perfors, A. F. (2010). Similarity, feature discovery and the size principle. Acta Psychologica, 133 , 256-268.
- Navarro, D. J., & Perfors, A. F. (2011). Hypothesis generation, sparse categories and the positive test strategy. Psychological Review , 118 , 120-134.
- Nickerson, S. (1996). Hempel's paradox and Wason's selection task: Logical and psychological puzzles of confirmation. Thinking and Reasoning, 2 , 1 -31.
- Oaksford, M., & Chater, N. (1994). A rational analysis of the selection task as optimal data selection. Psychological Review , 101 , 608-631.
- Osherson, D., Smith, E., Wilkie, O., Lopez, A., A. E. A.pez, & Shafir, E. (1990). Category-based induction. Psychological Review , 97 , 185-200.
- Osherson, D., Stern, J., Wilkie, O., Stob, M., & Smith, E. (1991). Default probability. Cognitive Science, 15 , 251-269.
- Ransom, K., Perfors, A. F., & Navarro, D. J. (in press). Leaping to cconclusion: Why premise relevance affects argument strength. Cognitive Science, .
- Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning & Verbal Behavior , 14 , 665-681.
- Sanjana, N., & Tenenbaum, J. (2003). Bayesian models of inductive generalization. In S. Beckers, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems (pp. 51- 58). Cambridge, MA: MIT Press volume 15.
- Shafto, P., & Goodman, N. (2008). Teaching games: Statistical sampling assumptions for learning in pedagogical situations. In B. C. Love, K. Mcrae, & V. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 1632-1637). Austin, TX.
- Shafto, P., Goodman, N. D., & Frank, M. C. (2012). Learning from others: The consequences of psychological reasoning for human learning. Psychological Science, 7 , 341-351.
- Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A rational account of pedagogical reasoning: Teaching by and learning from examples. Cognitive Psychology, 71 , 55-89.
- Shepard, R. (1987). Toward a universal law of generalization for psychological science. Science, 237 , 1317-1323.
- Sloman, S. (1993). Feature-based induction. Cognitive Psychology, 25 , 231-280.
- Smith, E. E., Shafir, E., & Osherson, D. (1993). Similarity, plausibility, and judgments of probability. Cognition, 49 , 67-96.
- Sperber, D., & Wilson, D. (1995). Relevance: Communication and cognition (2nd ed.). Malden, MA, US: Blackwell Publishers.
- Stiller, A., Goodman, N., & Frank, M. (2011). Ad-hoc scalar implicature in adults and children. In L. Carlson, C. Hoelscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 2134-2139). Austin, TX: Cognitive Science Society.
- Sullivan, J., & Barner, D. (2011). Number words, quantifiers, and principles of word learning. Wiley Interdisciplinary Reviews: Cognitive Science, 2 , 639-645.
- Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, and Bayesian inference. Behavioral and Brain sciences, 24 , 762-778.
- Tessler, M., & Goodman, N. D. (2014). Some arguments are probably valid: Syllogistic reasoning as communication. In P. Bello, M. Guarini, M. McShane, & B. Scasselati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society (pp. 1574-1579). Austin, TX: Cognitive Science Society.
- Van Der Henst, J., Sperber, D., & Politzer, G. (2002). When is a conclusion worth deriving? a relevance-based analysis of indeterminate relational problems. Thinking & Reasoning, 8 , 1-20.