Some histological and ultra-structural aspects of the oogenesis of Piaractus mesopotamicus Holmberg, 1887 (Teleostei) (original) (raw)

Occurrence and ultrastructural characterization of "nuage" during oogenesis and early spermatogenesis of Piaractus mesopotamicus Holmberg, 1887 (Teleostei)

Brazilian Journal of Biology, 2004

We investigated the occurrence and ultrastructurally characterized electrondense nuclear material (nuage) released from the nucleus during oogenesis and early spermatogenesis of Piaractus mesopotamicus, a fish from Pantanal Matogrossense (Brazil) having a seasonal reproductive cycle. The female germ cells presented two instances of nuclear material extrusion: in the oogonia and in the oocyte in the perinucleolar phase. In males, material with similar morphology and behavior occurred in the spematogonia. In all cases, this material was associated to mitochondria. The possible function of this material is discussed.

A new vision of the origin and the oocyte development in the Ostariophysi applied to Gymnotus sylvius (Teleostei: Gymnotiformes)

Neotropical Ichthyology, 2010

Based on new knowledge coming from marine perciform species, the origin of oocytes and their development in the Ostariophysi, Gymnotus sylvius is described. In both Gymnotus sylvius and marine perciform fish, oogonia are found in the germinal epithelium that forms the surface of the ovarian lamellae. At the commencement of folliculogenesis, proliferation of oogonia and their entrance into meiosis gives rise to germ cell nests that extend into the stroma from the germinal epithelium. Both cell nests and the germinal epithelium are supported by the same basement membrane that separates them from the stroma. At the time of meiotic arrest, oocytes in a cell nest become separated one from the other as processes of prefollicle cells, these being derived from epithelial cells in the germinal epithelium, gradually encompass and individualize them while also synthesizing a basement membrane around themselves during folliculogenesis. The oocyte enters primary growth while still within the cell nest. At the completion of folliculogenesis, the oocyte and follicle cells, composing the follicle, are encompassed by a basement membrane. The follicle remains connected to the germinal epithelium as the both share a portion of common basement membrane. Cells originating from the stroma encompass the ovarian follicle, except where there is a shared basement membrane, to form the theca. The follicle, basement membrane and theca form the follicular complex. Oocyte development occurs inside the follicular complex. Development is divided into the stages primary and secondary growth, oocyte maturation and ovulation. Cortical alveoli appear in the ooplasm just prior to the beginning of secondary growth, the vitellogenic stage that begins with yolk deposition and proceeds until the oocyte is full-grown and the ooplasm is filled with yolk globules. Maturation is characterized by the germinal vesicle or nuclear migration, germinal vesicle breakdown or nuclear envelop fragmentation and the resumption of meiosis. At the ovulation the egg is released from the follicular complex into the ovarian lumen. When compared to marine Perciformes that lay pelagic eggs, oocyte development in Gymnotus sylvius has fewer steps within the stages of development, the two most remarkable being the absence of oil droplet formation during primary and secondary growth, (and the consequent absence of the oil droplets fusion during maturation), and the hydrolysis of yolf preceding ovulation. . ovo é liberado do complexo folicular para o lúmen ovariano. Em comparação com os Perciformes marinhos com ovos pelágicos, o desenvolvimento oocitário em Gymnotus sylvius tem menos etapas dentro dos estágios de desenvolvimento, sendo as duas mais notáveis delas as ausências da formação das gotas de lipídio durante os crescimentos primário e secundário (e a consequente fusão das gotas para formar um único glóbulo de lipídio durante a maturação) e, a hidrólise do vitelo antecedendo a ovulação.

Previtellogenic oocytes of South African largemouth bass Micropterus salmoides Lacépède 1802 (Actinopterygii, Perciformes) - the Balbiani body, cortical alveoli and developing eggshell

Journal of Morphology, 2019

The ovaries of the largemouth bass Micropterus salmoides, an alien and invasive species in South Africa, contain a germinal epithelium which consists of germline and somatic cells, as well as previtellogenic and late vitellogenic ovarian follicles. The ovarian follicle consists of an oocyte surrounded by follicular cells and a basal lamina; thecal cells adjacent to this lamina are covered by an extracellular matrix. In this article, we describe the Balbiani body and the polarization and ultrastructure of the cytoplasm (ooplasm) in previtellogenic oocytes. The nucleoplasm in all examined oocytes contains lampbrush chromosomes, nuclear bodies and several nucleoli near the nuclear envelope. The ultrastructure of the nucleoli is described. Numerous nuage aggregations are present in the perinuclear cytoplasm in germline cells as well as in the ooplasm. Possible roles of these aggregations are discussed. The ooplasm contains the Balbiani body, which defines the future vegetal region in early previtellogenic oocytes. It is comprised of nuage aggregations, rough endoplasmic reticulum, Golgi apparatus, mitochondria, complexes of mitochondria with nuage-like material, and lysosome-like organelles. In mid-previtellogenic oocytes, the Balbiani body surrounds the nucleus and later disperses in the ooplasm. The lysosome-like organelles fuse and transform into vesicles containing material which is highly electron dense. As a result of the fusion of the vesicles of Golgi and rough endoplasmic reticulum, the cortical alveoli arise and distribute uniformly throughout the ooplasm of late previtellogenic oocytes. During this stage, the deposition of the eggshell (zona radiata) begins. The eggshell is penetrated by canals containing microvilli and consists of the following: the internal and the external egg envelope. In the external envelope three sublayers can be distinguished.

Ovary Differentiation and Activity in Teleostei Fish

Theriogenology

Teleostei fishes constitute a very large group among the vertebrates. They present several reproductive strategies, and many species are gonochoristics. During the gonadal differentiation, the gonadal primordium undergoes morphological changes giving rise to male or female gonads. Considering the lack of information about gonadal morphogenesis in Teleostei, especially in tangent aspects concerning the establishment of the germinal epithelium and its relation with the formation of the ovarian cavity, Tanichthys albonubes, Corydoras schwartzi, and Amatitlania nigrofasciata were taken as biological models to establish a comparative analysis of the female gonadal differentiation. In undifferentiated gonad, the epithelial cells associate with primordial germ cells and form germline cysts. These are distributed throughout the gonadal tissue; after the entrance of the oogonia into meiosis, the folliculogenesis occurs forming the first follicles, in a quite conserved process. However, the formation of the ovarian cavity is distinct. In T. albonubes and A. nigrofasciata, the lumen is formed by pleating and in C. schwartzi, it is formed by cavitation. The central lumen formed characterizes the cystovarian of Teleostei. Although there are differences in the chronology of the differentiation, the processes involved are quite similar and culminate in the formation of analogous structures.

Ultrastructure of differentiating oocytes and vitellogenesis in the giant freshwater prawn, Macrobrachium rosenbergii (de man)

Microscopy Research and Technique, 2012

The ultrastructure of oogenesis in Macrobrachium rosenbergii, with reference to vitellogenesis, has not been reported. We used light and electron microscopy, as well as vitellin (Vn) purification and antibody production, to study the temporal and spatial production of Vn in the ovary by immunofluorescence. Histologically, the ovary is subdivided into cone-shaped ovarian pouches with a central core containing layers of oogonia. These divide to produce oocytes that migrate outwardly and differentiate into mature oocytes. During the course of differentiation, oocytes undergo modifications, including the rearrangement of nuclear chromatin, the accumulation of ribosomes, rough endoplasmic reticulum (RER), and lipid, and the formation of secretory and yolk granules, resulting in four stages. Ultrastructurally, early previtellogenic oocytes (Oc 1 ) are characterized by the accumulation of new ribosomal aggregates, translocated from the nucleus. Late previtellogenic oocytes (Oc 2 ) show nuclear heterochromatin with a ''clock face'' pattern, the presence of RER, and three types of secretory granules. Follicular cells occupy the intercellular spaces and surround the Oc 2 . Early vitellogenic oocytes (Oc 3 ) are larger, with nuclei containing predominantly decondensed euchromatin, and cytoplasm with yolk and secretory granules, and few lipid droplets. Late vitellogenic oocytes (Oc 4 ) are characterized by completely euchromatic nuclei, an indistinct plasma membrane, yolk platelets and secretory granules, and abundant lipid. Vitellogenin (Vg) in ovaries of M. rosenbergii consist of two main bands at MW 90 and 102 kDa. Our data indicates that Vn is present, and probably synthesized in Oc 3 and Oc 4 , but there may be some undetected exogenous Vg production. in Wiley Online Library (wileyonlinelibrary.com).

Oocyte structure and ultrastructure in the Mexican silverside fish Chirostoma humboldtianum (Atheriniformes: Atherinopsidae)

Revista de Biología Tropical, 2007

the structural and ultrastructural features of gonads from endemic Mexican fish have received scarce attention. This study describes the histological and ultrastructural characteristics of the oocyte in Chirostoma humboldtianum. The ovary is asynchronic, and as such, most phases of oocyte development are found in the same ovary. The complete process of oogenesis was divided in five stages: oogonium and folliculogenesis, primary growth, cortical alveoli and lipid inclusions, vitellogenesis and maturation. The presence of big filaments, which appear at the end of primary growth, induces some common follicular adaptation. During primary growth, abundant ribosomes, rough endoplasmic reticulum, and mitochondria are grouped in the cytoplasm. At the end of this stage, the Z1 layer of the chorion is developed, while microvilli start to be evident as well. In the cortical alveoli and lipid droplets phase, intense PAS positive vesicles, some of them containing nucleoid material, are observed in the peripheral cytoplasm and the lipid droplets take a more central position. In vitellogenesis, the proteic yolk accumulates in a centripetal way while the chorion is completely formed. In maturation, the germinal vesicle migrates to the animal pole, meiosis is restored, and there is nuclear breakdown. The oocyte increases its size and holds some oil droplets and a big fluid mass of yolk. On the outside, filaments surround the oocyte completely. Rev. Biol. Trop. 56 (4): 1825-1835. Epub 2008 December 12.

Ultrastructure of oogenesis in the bluefin tuna,Thunnus thynnus

Journal of Morphology, 2005

Ovarian ultrastructure of the Atlantic bluefin tuna (Thunnus thynnus) was investigated during the reproductive season with the aim of improving our understanding of the reproductive biology in this species. The bluefin, like the other tunas, has an asynchronous mode of ovarian development; therefore, all developmental stages of the oocyte can be found in mature ovaries. The process of oocyte development can be divided into five distinct stages (formation of oocytes from oogonia, primary growth, lipid stage, vitellogenesis, and maturation). Although histological and ultrastructural features of most these stages are similar among all studied teleosts, the transitional period between primary growth and vitellogenesis exhibits interspecific morphological differences that depend on the egg physiology. Although the most remarkable feature of this stage in many teleosts is the occurrence of cortical alveoli, in the bluefin tuna, as is common in marine fishes, the predominant cytoplasmic inclusions are lipid droplets. Nests of early meiotic oocytes derive from the germinal epithelium that borders the ovarian lumen. Each oocyte in the nest becomes surrounded by extensions of prefollicle cells derived from somatic epithelial cells and these form the follicle that is located in the stromal tissue. The primary growth stage is characterized by intense RNA synthesis and the differentiation of the vitelline envelope. Secondary growth commences with the accumulation of lipid droplets in the oocyte cytoplasm (lipid stage), which is then followed by massive uptake and processing of proteins into yolk platelets (vitellogenic stage). During the maturation stage the lipid inclusions coalesce into a single oil droplet, and hydrolysis of the yolk platelets leads to the formation of a homogeneous mass of fluid yolk in mature eggs.

Morphological study of the spermatogenesis in the teleost Piaractus mesopotamicus

2000

The spermatogenesis of Piaractus mesopotamicus was investigated under light and transmis- sion electron microscopy. The specimens were captured from their natural environment (Rio Miranda and Rio Aquidauana, Pantanal Matogrossense, Brazil) during April and September. The results were compared with the spermatogenic data of specimens under captivity condition. In both conditions, P. mesopotamicus pre- sented the typical spermatogenesis pattern of the