Atomic fluorine beam etching of silicon and related materials (original) (raw)
Abstract
A 1 eV neutral atomic fluorine beam has been shown to produce etch rates in silicon as high as 1 µm/min. Using a CaF 2 resist layer we fabricated 120 µm-deep by 1 µm-wide trenches (aspect ratio 120:1) in silicon with little sidewall taper (slopes of about 1000:1) or aspect-ratio dependent etching effects. Achieving such anisotropic etching suggests that the scattered species do not contribute significantly to sidewall etching under the conditions of this experiment. We estimate that the ultimate depth attainable for a 1 µm-wide trench is about 250 µm and that the critical parameter for attaining a trench of a certain depth is the aspect ratio. Our observations and analysis suggest that this etching technique can be used to fabricate trenches on a nanoscale level while maintaining high aspect ratios of 100 or greater.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (22)
- R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, J. Vac. Sci. Technol. B 10, 2133 (1992).
- T. Nozawa, T. Kinoshita, T. Nishizuka, A. Narai, T. Inoue, and A. Nakaue, Jpn. J. Appl. Phys. 34, 2107 (1995).
- G. Dharmasena, K. Copeland, J. H. Young, R. A. Lasell, T. R. Phillips, G. A. Parker, and M. Keil, J. Phys. Chem. A 101, 6429 (1997);
- M. Keil, J. H. Young, and K. Copeland, "Method and Apparatus for Etching Surfaces with Atomic Fluorine" U. S. Patent #5,597,495.
- M. Faubel, B. Martinez-Haya, L.Y. Rusin, U. Tuppe, and J. P. Toennies, J. Phys. D: Appl. Phys. 29, 1885 (1996).
- K. P. Giapis, T. A. Moore, and T. K. Minton, J. Vac. Sci. Technol. A 13, 959 (1995).
- R. J. Levis, C. J. Waltman, L. M. Cousins, R. G. Copeland, and S. R. Leone, J. Vac. Sci. Tech. A, 3118 (1990).
- Szabo, P. D. Farrall, and T. Engel, J. Appl. Phys., 3623 (1994).
- M. Faubel, B. Martinez-Haya, L. Y. Rusin, U. Tappe, and J.P. Toennies, J. Phys. Chem. A 101, 6415 (1997).
- J.F. O'Hanlon, in A Users Guide to Vacuum Technology, 2 nd ed., John Wiley & Sons, New York, 1989),p. 466.
- The Si samples were run longer than the Si 3 N 4 and SiO 2 because the latter were only available as thin films.
- D. L. Flamm, V. M. Donnelly, and J. A. Mucha, J. Appl. Phys. 52(5), 3633 (1981).
- R. Petri, P. Brault, O. Vatel, D. Henry, E. Andre, P Dumas, and F. Salvan, J. Appl. Phys.75(11), 7498 (1994).
- M. J. M. Vugts, M. F. A. Eurlings, L. J. F. Hermans, and H. C. W. Beijerinck, J. Vac. Sci. Technol. A 14(5), 2780 (1996).
- Y. Hirose, S. Horng, A. Kahn, C. Wrenn, and R. Pfeffer, J. Vac. Sci. Technol. A 10(4), 960 (1992).
- A. G. Nassiopoulos, S. Grigoropoulos, E. Gogolides, and D. Papadimitriou, Appl. Phys. Lett. 66(9), 1114 (1995).
- J. K. Bhardwaj, H. Ashraf, Proceedings of the SPIE 2639, 224 (1995).
- Due to the difficulty in measuring beam flux, etching efficiencies for beam techniques have much larger errors (e.g., a factor of 2 for our results) than the data of Flamm et a.l. However, this factor of 2 error is much smaller than the ~10x enhancement observed over the data of Flamm et al..
- J. W. Coburn and H. F. Winters, Appl. Phys. Lett. 55, 2730 (1989).
- G. S. Hwang, C. M. Anderson, M. J. Gordon, T. A. Moore, T. K. Minton, and K. P. Giapis, Phys. Rev. Lett. 77, 3049 (1996).
- From Hwang et al. deconvolution of their scattering data suggests three distinct scattering processes: 1) direct inelastic scattering with a Gaussian angular distribution about the specular direction, and 2) indirect inelastic scattering and 3) trapping desorption, both with approximately cosine angular distributions
- G. L. Weissler and R. W. Carlson, in Vacuum Physics and Technology, Volume 14, Academic Press, New York, 1979.