Enhanced aqueous dissolution of a DNAPL source to characterize the source strength function (original) (raw)
Related papers
[1] A three-dimensional multiphase numerical model was used to simulate the infiltration and dissolution of a dense nonaqueous phase liquid (DNAPL) release in two experimental flow cells containing different heterogeneous and well-characterized permeability fields. DNAPL infiltration was modeled using Brooks-Corey-Burdine hysteretic constitutive relationships. DNAPL dissolution was simulated using a rate-limited mass transfer expression with a velocity-dependent mass transfer coefficient and a thermodynamically based calculation of DNAPL-water interfacial area. The model did not require calibration of any parameters. The model predictions were compared to experimental measurements of high-resolution DNAPL saturations and effluent concentrations. The predicted concentrations were in close agreement with measurements for both domains, indicating that important processes were effectively captured by the model. DNAPL saturations greatly influenced mass transfer rates through their effect on relative permeability and velocity. Areas with low DNAPL saturation were associated with low interfacial areas, which resulted in reduced mass transfer rates and nonequilibrium dissolution. This was captured by the thermodynamic interfacial area model, while a geometric model overestimated the interfacial areas and the overall mass transfer. This study presents the first validation of the thermodynamic dissolution model in three dimensions and for high aqueous phase velocities; such conditions are typical for remediation operations, especially in heterogeneous aquifers. The demonstrated ability to predict DNAPL dissolution, only requiring prior characterization of soil properties and DNAPL release conditions, represents a significant improvement compared to empirical dissolution models and provides an opportunity to delineate the relationship between source zone architecture and the remediation potential for complex DNAPL source zones. Citation: Kokkinaki, A., D. M. O'Carroll, C. J. Werth, and B. E. Sleep (2013), Coupled simulation of DNAPL infiltration and dissolution in three-dimensional heterogeneous domains: Process model validation, Water Resour.
Sustainability
Dense nonaqueous phase liquid (DNAPL) in the subsurface environment beyond the permissible limit poses a threat to human health and a suite of ecological services. An accurate prediction of the concentration and mass fluxes of DNAPL at environmentally sensitive locations and their temporal variations can be obtained using robust and efficient fate and transport mathematical models. Thus, this study evaluated 412 articles published from 1990 to 2022 utilizing the Scopus® database to provide a quantitative overview of the present trends and future perspectives of the DNAPL transport research field, especially fate and transport models via bibliometric analysis. The major findings of the published literature based on the scale of the study and type of modeling framework, relationships of governing parameters with a scale of study, and recent developments in the mathematical models were discussed. The country-citation analysis revealed the USA and Canada as leading countries in DNAPL fa...